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Number Needed to Treat
(NNT)

Introduction

The number needed to treat (NNT) was originally
proposed as a way of presenting the results of ran-
domized clinical trials with binary outcome [16, 32,
33, 47, 48, 50]. Defined as the inverse of the abso-
lute risk reduction (ARR), the number needed to
treat is the average number of patients needed to
be treated to prevent an adverse outcome in one
additional patient compared to a control or standard
treatment group. For example, in the Diabetes Con-
trol and Complications Trial (DCCT) the five-year
risk of neuropathy in type 1 diabetic patients was
16.9% in the standard treatment group compared to
6.7% in the intensive insulin treatment group [18].
The absolute effect of the treatment can be described
by ARR = 16.9% − 6.7% = 10.2%. This translates
to NNT = 1/0.102 = 9.8 ≈ 10, that is, on average
10 patients are needed to be treated with intensive
diabetes therapy to prevent one additional case of
neuropathy compared to the standard therapy. For an
adequate interpretation of NNTs, the characteristics of
patients being treated, the outcome being measured,
and the type and duration of interventions being com-
pared have to be known.

NNT as well as ARR represent absolute measures
of the treatment effect. Relative effect measures such
as the odds ratio (OR), the relative risk (RR), or
the relative risk reduction (RRR) frequently result in
impressive numbers, even though the absolute effect
of the treatment might be low. For example, if the two
risks are π0 = 0.6 and π1 = 0.1, then RRR = 83%,
ARR = 0.5 and NNT = 2; if the two risks are π0 =
0.006 and π1 = 0.001, then RRR = 83% remains
the same, but ARR = 0.005 and NNT = 200. Owing
to the low baseline risk, the absolute effect of the
treatment is also low, which is described by ARR
and NNT. The information given by ARR and NNT
is mathematically identical. However, the statement
“200 patients are needed to be treated in order to
avoid one event” is potentially more informative and
comprehensible than “the treatment reduces the risk
of an event by 0.005”. Several studies demonstrated
that assessment of health-care intervention effects by
consumers is affected by the way in which study
results are presented. The inclination of physicians to

prescribe drugs and to treat patients is stronger when
study results are presented by means of relative effect
measures than when the same study is described by
using absolute effect measures [12, 23, 40]. Health
authority members are more willing to support health
programs when results are expressed as RRRs com-
pared with absolute effect measures [22]. Likewise,
more patients assent to receive a therapy when poten-
tial benefits are reported in terms of RRR rather than
ARR or NNT [29].

NNT has become the standard for presenting
results of randomized clinical trials in the journal
Evidence-Based Medicine [47] and the ACP Journal
Club [1] and use of NNT to express study results is
suggested in the CONSORT explanation and elabo-
ration document [6]. However, the widespread appli-
cation and extension of NNT in different settings is
not without difficulties and care is required to use
and interpret NNT appropriately. Recent develop-
ments regarding NNT are given by the development
of methods to express benefit as well as harm, the
calculation, presentation, and interpretation of confi-
dence intervals, the application in screening studies,
public health research, epidemiology (case–control
and cohort studies), crossover studies, studies mea-
suring continuous and time-to-event data, risk-benefit
analyses, and systematic reviews. In the following,
the characteristics and application areas of NNT
are summarized.

General Characteristics

Relation to Other Effect Measures

A large number of effect measures exist to express
the magnitude of difference between two groups
concerning the risk of an adverse event. Let π0 be
the risk in the control group and π1 be the risk in the
treatment group. In the case of a beneficial treatment
(π0 > π1) the most frequently used effect measures
derived from a simple 2 × 2 table are

Absolute risk reduction: ARR = π0 − π1

Relative risk: RR = π1

π0

Relative risk reduction: RRR = π0 − π1

π0

= 1 − RR
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Odds ratio: OR = π1 × (1 − π0)

π0 × (1 − π1)

Number needed to treat: NNT = 1

π0 − π1
= 1

ARR

The relation between NNT and ARR is obvious.
It is helpful in practice to also express NNT as a
function of RR, RRR, OR, and the control event rate
π0. The respective formulae are given by

NNT = 1

(1 − RR) × π0
= 1

RRR × π0
(1)

NNT = 1 − (1 − OR) × π0

(1 − OR) × π0 × (1 − π0)

= 1

(1 − OR) × π0
+ OR

(1 − OR) × (1 − π0)

(2)

Similar formulas are published for the case of
harmful treatments [7, 9], for considering desirable
instead of adverse outcomes [39], and for the inverse
definitions of RR and OR [28].

Quantifying Benefit and Harm

NNT represents the inverse of the difference of
two risks. On principle, the difference of two risks
can be positive, zero, or negative. The concept of
NNT was originally developed for the situation of a
beneficial treatment, so that the risk of an adverse
event in the treatment group is lower than in the
control group [33]. Thus, calculating the risk differ-
ence as control minus treatment leads to a positive
ARR value. Considering only beneficial treatments,
the term “number needed to treat” was proposed
to describe the inverse of ARR. In the case of a
harmful treatment, this calculation leads to a nega-
tive risk difference and a negative NNT. To avoid
negative numbers, the risk difference is calculated as
treatment minus control if the risk of the treatment
group is higher than that of the control group lead-
ing to a positive value called absolute risk increase
(ARI). To describe the inverse of ARI, the unfa-
vorable term “number needed to harm” (NNH) was
used [39]. Recognizing that NNT and NNH are not
good abbreviations, Altman suggested the terminol-
ogy “number of patients needed to be treated for
one additional patient to benefit” (NNTB) or “be
harmed” (NNTH) [2]. This terminology should be

used when it is necessary to indicate the direction of
the effect. In the case of desirable outcomes, such as
healing or improvement of quality of life, the order
of the two probabilities in the calculation of NNT is
reversed. Here, NNTB represents the average number
of patients needed to be treated to gain one additional
beneficial outcome compared to a control or standard
treatment group [55].

Confidence Intervals

As with other estimated effect measures, it is impor-
tant to document the uncertainty of the estimation by
means of an appropriate confidence interval. In prin-
ciple, confidence intervals for NNTs can be obtained
by inverting and exchanging the confidence limits of
the corresponding risk difference [17]. Nevertheless,
calculating, presenting, and interpreting confidence
intervals for NNTs is not straightforward. Owing to
the reciprocal transformation, the NNT has undesir-
able statistical properties [34]. To obtain meaningful
confidence intervals for NNT two issues have to be
considered. Firstly, the unusual scale of NNT has to
be taken into account, and secondly, an appropriate
method to calculate confidence intervals for the risk
difference is required.

The key to understand the confidence interval for
NNT is that the domain of NNT is the union of 1 to ∞
(in the NNTB region) and −∞ to −1 (in the NNTH
region). The best value of NNT indicating the largest
possible beneficial treatment effect is 1, the NNT
value indicating no treatment effect (ARR = 0) is
±∞, and the worst NNT value indicating the largest
possible harmful effect is −1. Values between −1
and 1 are impossible for NNT. Owing to estimation
uncertainty, the estimated NNT may be negative even
when the true NNT is positive and vice versa. Even
when the sign of the estimated and true NNT are
identical, the estimation uncertainty can be so large
that neither a harmful nor a beneficial effect can
be excluded. In this case, the confidence interval
covers both the NNTB and the NNTH region. Thus,
the result NNT = 10 with confidence limits 4 and
−20 means that the two regions 4 to ∞ and −20
to −∞ form the confidence interval. To make this
clear, a confidence interval for an NNT estimate that
is not statistically significant should be presented
as NNTB = 10 (NNTB 4 to ∞ to NNTH 20) [2].
This presentation indicates that a beneficial treatment
effect of NNTB = 10 is estimated, but the uncertainty
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of this estimation is so large that a more beneficial
effect up to NNTB = 4 and a less beneficial effect
up to NNTB = ∞ (no effect at all) as well as a
harmful effect up to NNTH = 20 is compatible with
the observed data.

For large sample sizes and risks not close to 0 or
1, the usual Wald method can be used to calculate
confidence intervals for risk differences (see Estima-
tion, Interval). However, Wald confidence intervals
have poor coverage probabilities and a propensity to
aberrations in many practical situations. Thus, New-
combe proposed to calculate confidence intervals for
risk differences based upon Wilson scores [42]. This
method was also recommended for NNT [8].

Let n0 and n1 be the number of patients in the
control and the treatment group, respectively, and
let e0 and e1 be the number of patients having
an event in the control and the treatment group,
respectively. The risks of an event in the two groups
can then be estimated by the proportions p0 = e0/n0

and p1 = e1/n1. The effect measures can be estimated
by ARR = p0 − p1 and NNT = 1/(p0 − p1). Using
this notation, the 100 × (1 − α)% confidence interval
for ARR based upon Wilson scores is given by:

LL(ARR) = p0 − p1 − δ and

UL(ARR) = p0 − p1 + ε, (3)

where

δ =
√

(p0 − l0)2 + (u1 − p1)2,

ε =
√

(u0 − p0)2 + (p1 − l1)2,

li = ϕi −
√

ϕ2
i − ψi, ui = ϕi +

√
ϕ2

i − ψi, i = 0, 1,

ϕi = 2ei + z2
1−α/2

2(ni + z2
1−α/2)

, ψi = e2
i

n2
i + niz

2
1−α/2

, i = 0, 1,

and z1−α/2 is the (1 − α/2)-quantile of the standard
normal distribution.

The corresponding confidence limits for NNT can
then be calculated by LL(NNT)=1/UL(ARR) and
UL(NNT)=1/LL(ARR) in consideration of the NNT
scale ranging from 1 through ∞ to −1 (see above).
An SAS program can be used for calculations [8].

Confidence intervals for NNT based upon Wil-
son scores seem to be adequate for most practical
applications. For very small sample sizes or appli-
cations, which require that the true confidence level
under no circumstances remains under the nominal

level, exact [14] or quasi-exact methods [15] should
be used (see Exact Inference for Categorical Data).

Extensions and Applications

The principle of NNT has been extended and sug-
gested for use in a wide variety of circumstances.
The most important ones are summarized below.

Screening

Rembold extended the NNT concept to compare
strategies for disease screening [44]. The analogous
statistic termed “number needed to screen” (NNS)
describes the number of people that need to be
screened to prevent one death or adverse event. In
clinical trials that directly investigate the benefit of
a screening strategy, the point and interval estima-
tion of NNS is identical to that of NNT. However,
the intervention under study is a screening strat-
egy applied to a population, rather than a treatment
applied to patients. If no study exists that evaluates
directly the benefit of a screening strategy, NNS esti-
mation can be performed by combining the knowl-
edge of clinical trials investigating the benefit of treat-
ing risk factors and the prevalence of persons with
inadequately treated risk factors in the community.
Under the assumption that screened individuals with
positive results will show full compliance with subse-
quent treatment, NNS can be calculated by dividing
the corresponding NNT by the prevalence of unaware
or untreated disease.

Expressing the absolute effect of screening strate-
gies as NNS values has the same advantages as the
presentation of treatment effects by means of NNTs.
However, the NNS approach has some limitations.
Firstly, the division of NNTs by an estimated preva-
lence of untreated disease is subject to propagation
of errors. A method to calculate confidence intervals
for NNS taking the uncertainty of both the NNT and
the prevalence estimation into account is required.
Secondly, NNS values calculated from clinical tri-
als investigating the benefit of a screening strategy
directly (see Screening Trials) may not be compa-
rable to NNS values calculated from NNTs divided
by the prevalence of unaware or untreated disease.
The former may be more affected by participation
and selection effects than the latter. Hence, Richard-
son suggested to multiply the directly estimated NNS
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by the participation rate adjusted for selection to
obtain an NNS value free of participation and selec-
tion effects [45]. However, this method is even more
exposed to propagation of errors. Moreover, the bene-
fit of a screening strategy should be described includ-
ing participation and selection effects. Analogous
to the intention to treat analysis of clinical trials,
the gold standard is the unadjusted NNS estimated
from trials directly investigating the benefit of screen-
ing strategies.

Public Health Research

The NNT statistic relates to those patients actually
treated and gives no information how many peo-
ple of all patients with the disease or of the total
population will benefit from the treatment. Heller &
Dobson proposed two new statistics offering a public
health perspective [27]. The idea is similar to that of
NNS calculated by NNT divided by the prevalence
of unaware or untreated disease. The “disease impact
number” (DIN) takes into account the number of peo-
ple in the population with the disease, not just those
eligible for treatment according to the entry criteria
of the considered clinical trial. DIN is calculated by
dividing NNT by the proportion of patients with the
disease who are eligible for treatment. The “popu-
lation impact number” (PIN) takes into account the
total size of the population from which the patients
with the disease are drawn. PIN is calculated by
dividing DIN by the prevalence of disease in the pop-
ulation. DINs and PINs suffer from limitations similar
to those of indirectly estimated NNS values. Owing
to the division of NNTs by estimated proportions they
are subject to greater random error than NNT. How-
ever, they may play a role as communication tool for
treatment effects from a population perspective [52].

Case–control Studies

Bjerre & LeLorier proposed to use the NNTH statis-
tic to express the magnitude of harmful exposures
effects in case–control studies [11]. As informa-
tion about the absolute risk is not directly available
from case–control studies, they calculated NNTH by
using the odds ratio provided by the case–control
study and the unexposed event rate obtained from
external sources. Although not mentioned by the
authors, an additional advantage of this approach
is that adjusted NNTs can be calculated by using

adjusted ORs to estimate the corresponding NNT
values (see next section). Confidence intervals for
NNTH are calculated by transforming the confidence
limits of OR. Unfortunately, to calculate NNTH as
function of OR, formula (1) was used, which actu-
ally represents the relation between NNT and RR.
Thus, NNTH is systematically underestimated, that
is, the exposure effect is overestimated. The mag-
nitude of this error is negligible if OR and RR are
approximately equal. Thus, in case-control studies, in
which usually rare diseases are investigated, the error
is unimportant. However, in situations where OR
and RR are quite different, either formula (1) with
RR or formula (2) with OR must be applied to
obtain correct results. Let NNTH 1,OR be the NNTH
value calculated by formula (1) with OR and let
NNTH true be the true NNTH. It can be shown that
(NNTH true − NNTH 1,OR)/NNTH true = π1, that is, the
relative error of NNTH 1,OR equals the exposed event
rate [7]. Even, if the correct formula is used, a limita-
tion of this approach is that the confidence interval for
NNTH takes into account the uncertainty of the OR
estimation but not that of the unexposed event rate. A
possible solution is given by the methods developed
by King & Zeng for point and interval estimation of
risk differences in case–control studies based upon
Bayesian methods or a range of possible values for
the unexposed event rate [30].

Cohort Studies

The NNT concept has been applied to compare
exposed and unexposed persons in cohort stud-
ies [9]. For this application, the term “number needed
to be exposed” (NNE) was suggested. When it is
necessary to distinguish between harmful and benefi-
cial exposures, the abbreviations NNEH and NNEB
should be used. In the case of a harmful exposure,
NNEH represents the average number of persons
needed to be exposed for one additional case of dis-
ease or death compared to the unexposed persons.
NNEs are calculated as a function of the odds ratio
and the unexposed event rate by means of formula
(2). This approach allows the calculation of adjusted
NNEs by using adjusted odds ratios, estimated, for
example, by multiple logistic regression. Within the
framework of logistic regression, the adjusted odds
ratio is constant over the distribution of the con-
sidered confounders. However, the event rates and
their differences are dependent on the confounder
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values. Thus, NNE also varies with the values of
the confounding variables, which has to be taken
into account when adjusted NNEs are estimated. Two
methods were proposed to calculate adjusted NNEs.
In the first approach, the mean risk of the unex-
posed persons is used and NNE is calculated for
the corresponding confounder profile. In the second
approach, NNE is calculated for some fixed con-
founder profiles, which gives an impression about
different absolute effects of the exposure in cohorts
with varying confounder values. A similar principle
is applied to calculate pooled NNTs in meta-analysis
(see below).

Confidence intervals for adjusted NNEs can be
calculated indirectly via confidence intervals for the
corresponding risk difference. Within the framework
of logistic regression analysis applied to prospective
cohort data, risk differences between the exposed
and unexposed persons can be expressed as func-
tions of the logistic regression coefficients. Thus,
approximate standard errors and confidence inter-
vals for risk differences can be calculated by means
of the multivariate delta method [9]. In contrast with
the calculation of NNTs in case–control studies, this
method takes the estimation uncertainties of both the
odds ratio and the unexposed event rate into account.
The adequacy of the approximate confidence inter-
vals was investigated via simulations demonstrating
sufficient quality for most epidemiological applica-
tions [10].

Continuous Data

NNT represents a summary statistic for the com-
parison of two groups concerning a binary out-
come. Nevertheless, in some applications, investi-
gators want to express their study results in terms
of NNT although the outcome variable is measured
in a continuous scale (see Random Variable). One
obvious method to calculate NNTs for continuous
outcomes is to dichotomize the response in both
groups and to apply the usual methods. Alternatively,
one can dichotomize the difference of the responses
between the two groups. Walter examined the prob-
ability that the difference of the responses between
the two groups is larger than the minimally impor-
tant difference (see Sample Size Determination for
Clinical Trials) [55]. Without loss of generality, we
assume that higher response values correspond to
adverse outcomes (such as hypertension). Let X0

and X1 be the control and treatment responses of a
given subject and c be the minimally important dif-
ference. The probability described above is given by
θ = P(X0 − X1 > c). The continuous data version
of NNT is then calculated by NNT = 1/θ . Under the
assumption of bivariate normality of (X0,X1), θ is
given by

θ = Φ


 µ0 − µ1 − c√

σ 2
0 + σ 2

1 − 2ρσ0σ1


 , (4)

where Φ denotes the distribution function of the
standard normal distribution, µ0 and µ1 and σ0 and σ1

are the means and standard deviations of X0 and X1,
respectively, and ρ is correlation of X0 and X1 [55].
Estimation of θ and NNT is performed by substituting
the usual estimates of µ0, µ1, σ0, σ1 and ρ into
(4). Formulas for the standard error of the estimated
probability θ can be derived by means of the delta
method both for paired and unpaired data [55].

It should be noted that formula (4) is first of all
only useful in studies, which provide an estimate
of ρ (such as crossover studies, see below). In all
designs considered so far (randomized clinical tri-
als with parallel group design, cohort studies, and
case–control studies with two independent groups)
the within-subject correlation is not estimable. In this
case, Walter proposed to use a variety of different
assumed values of ρ and investigate the sensitivity
of θ to the unknown correlation value [55]. Alter-
natively, in studies observing independent groups,
the first mentioned approach of dichotomizing the
response in both groups could be used.

In practice, continuous outcomes are frequently
subject to random measurement error. Even in the
case of nondifferential measurement error, dichoto-
mization of continuous variables leads to a bias in the
estimated proportions and estimated NNTs. Walter &
Irwig investigated the effect of measurement error in
continuous outcomes on NNT estimation [56], and
methods to reduce the bias by adjusting for mea-
surement error are in development [38]. In general,
even in the case of no measurement error, one should
be aware of the potential loss of information due to
categorizing of continuous variables. Hence, calcu-
lation of NNTs from continuous data can only serve
as supplement to the analysis of data in the origi-
nal continuous scale by using means and differences
of means.
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Crossover Studies

Originally, the NNT statistic was developed for use
in studies investigating two independent groups. Wal-
ter systematically examined NNT estimators and
their variances for both crossover and parallel group
designs [55]. Owing to the undesirable statistical
properties of NNT, it is preferable to calculate the
standard errors of the corresponding risk differences
instead of the NNTs themselves. The NNT estima-
tors are identical in both designs, whereas standard
errors are different. Approximate confidence intervals
for risk differences can be calculated in both designs
by using the Wald method [55]. As described before,
confidence intervals for NNTs can be obtained by
inverting and exchanging confidence limits of the
corresponding risk difference [17]. For the parallel
group design, it was shown that the Wald method
is unreliable in many practical situations. The same
holds for crossover studies, in which it is preferable
to calculate confidence intervals for the difference
between paired proportions based upon the Wilson
score method [41].

As crossover studies provide an estimate of the
within-subject correlation, the continuous data ver-
sion of NNT based upon the minimally important
difference (see above) can be estimated directly.
Under the assumption of normality of the continuous
response, NNT can be estimated by using equa-
tion (4). Without making distributional assumptions,
NNT is given by the inverse proportion of subjects for
which the difference between the responses is larger
than the minimally important difference [55].

Survival Data

The concept of NNT was originally developed for
binary outcomes measured at a specific fixed time
point. Nevertheless, NNTs are also calculated and
presented for studies where the outcome is the time to
an event (see Survival Analysis, Overview). Unfor-
tunately, unclear and questionable methods have been
used for point and interval estimation of NNT in
studies in which follow-up times are not equal for
all patients. Owing to the application of questionable
ad hoc methods, different and confusing results have
been published for the same data [8].

First, it should be noticed that in studies with vary-
ing follow-up times, NNT would also vary according
to the length of follow-up. In such studies, no sin-
gle NNT value exists. NNT can be calculated at

any time point after the start of the treatment. Fre-
quently used methods to analyze survival times are
given by Kaplan–Meier survival curves providing
estimates of the survival probabilities S0(t) and S1(t)

of the control and treatment group, respectively, and
the Cox regression model, providing an estimate of
the hazard ratio (HR), possibly adjusted for other
prognostic variables. Altman & Andersen proposed
to estimate NNT by means of

NNT (t) = 1

S1(t) − S0(t)
(5)

if the survival probabilities S0(t) and S1(t) are given,
or by

NNT (t) = 1

(S0(t))HR − S0(t)
(6)

if the assumption of proportional hazards is fulfilled
and S0(t) and the HR for the comparison of the
control and treatment group are given [3]. If one fixed
time point is specified, one NNT value is obtained.
Otherwise, (5) and (6) will lead to a NNT curve as a
function of time.

To get an NNT statistic independent of time,
Lubsen et al. proposed to calculate NNTs by the
reciprocal of the difference of two hazards [36].
However, this approach requires the assumption of
constant hazards. Moreover, the difference of hazards
is not the same as the difference of risks. Thus, this
approach leads to a statistic with a different meaning
than that of the usual NNT. It should be noted that in
the presence of confounders survival probabilities are
dependent on the confounder values even if we can
assume a constant HR. Thus, NNT not only depends
on time but also on confounders. Altman & Ander-
sen proposed to calculate NNT curves for different
subsets of patients with varying prognosis [3]. How-
ever, more work is required to develop methods for
estimation of adjusted NNTs from survival times.

Combining and Pooling

Risk-benefit Analysis

The decision about the use of a treatment should not
be based upon its effect on the target event alone.
Adverse side effects attributable to treatment as well
as costs of therapy and costs avoided by preventing
target events should also be considered (see Decision
Analysis in Diagnosis and Treatment Choice). The
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“threshold NNT” (NNTT) was defined as the NNT
value at which the therapeutic benefit equals the
therapeutic risks [25, 26, 51]. If the estimated NNT
is below the threshold NNT, then treatment should
be administered. If the estimated NNT is above the
threshold NNT, the patients should not be treated
because the risks and costs of treatment are larger
than the expected benefit. The threshold NNT is
given by

NNT T = TEC + TEV

DC + AER × (AEC + AEV )
, (7)

where TEC represents the costs of treating one target
event, TEV the value of one target event avoided
(given in the same economic units as costs), DC the
direct costs of therapy, AEC the costs of treating
one adverse side effect, AEV the value of the side
effect and AER the event rate of the side effect [51].
Similar formulas for considering multiple side effects
and omitting costs can be found elsewhere [51].

While the concept of the threshold NNT seems
to be appealing, the practical application is challeng-
ing. For an adequate decision making, the estimation
uncertainties should be taken into account. The spec-
ification of the data (costs and values) required for
the calculation of the threshold NNT is not easy and
the quantification of these data uncertainties is much
more difficult. Especially, the values one is willing
to pay for one target or one side effect avoided are
highly subjective. Thus, it is quite important to dis-
close all data and assumptions used for calculating a
threshold NNT.

Combined NNT Measures for Different Outcomes

Several approaches have been published to combine
the NNTB of the target event and the NNTH of a
side effect into one measure incorporating benefit as
well as harm. Let π0, π1 be risks of the target event
and ν0, ν1 the risks of the side effect in the control
and the treatment group, respectively. We consider
the case of an adverse target event, an adverse side
effect and a treatment that is beneficial concerning
the target event (π0 > π1) but harmful concerning
the side effect (ν1 > ν0). For other situations, appro-
priate modifications of the following measures are
required. Riegelman & Schroth proposed the com-
bined measure

NNTcomb = 1

(π0 − π1) − (ν1 − ν0)
, (8)

that is, the reciprocal of the difference between ARR
of the target event and ARI of the side effect [46].
The authors proceeded by adjusting this measure
for the qualities and timings of the considered out-
comes [46]. This procedure was criticized because a
decision analysis has to be carried out before the
quality-adjusted NNT can be calculated [19]. Thus,
the intuitive meaning, which is one advantage of the
NNT statistic, is lost. It is only possible to interpret a
quality-adjusted NNT if the underlying decision anal-
ysis is understood. The statistical properties of the
quality-adjusted NNT statistic have not been investi-
gated and no methods to calculate confidence inter-
vals have been developed.

A second approach of an NNT measure incorpo-
rating benefit and harm was proposed by Schulzer
& Mancini [49]. They tried to calculate the number
of patients needed to treat to produce one “unquali-
fied success” (US), that is, the situation in which one
adverse target event is avoided while simultaneously
no treatment-induced side effect occurred. The NNT
for one unqualified success is given by

NNT US = 1

(π0 − π1) × [1 − (ν1 − ν0)]
. (9)

Formula (9) is based upon the assumption that the tar-
get event and the adverse side effect are independent
in both the untreated and the treated population. This
assumption will rarely be true in practical applica-
tions. Although a procedure was proposed to handle
situations in which an association between the pre-
vention of a target event and the induction of a side
effect is expected [37], this approach suffers from
the lack of an appropriate method to estimate the
association from the data. Moreover, no adequate
method to calculate confidence intervals for NNTUS

has been developed.
Willan et al. proposed the benefit–risk ratio

R = NNTH (side effect)

NNTB(target effect)
= π0 − π1

ν1 − ν0

= (π0 − π1) × NNTH (side effect), (10)

which can be interpreted as increase in the expected
number of prevented target events achieved for
each additional adverse side effect induced by
treatment [57]. For large sample sizes, Willan
et al. developed a statistical procedure to construct
confidence intervals for the benefit–risk ratio based
upon Fieller’s theorem [57].
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The development of a combined NNT statistic
incorporating benefit and harm of multiple events
is not straightforward. Before one of the proposed
combined NNT measures considering multiple events
can be routinely applied in practice, more work is
required concerning the practical utility of these mea-
sure as well as their statistical properties, especially
in small samples.

Meta-analysis

Since NNT has been advocated as a useful effect mea-
sure for systematic reviews [39], a number of authors
have pointed out that particular caution is needed in
deriving pooled NNTs in meta-analyses [5, 13, 20,
21, 53]. A single pooled NNT value over all stud-
ies in a meta-analysis may be misleading, especially
if there is a variation in the baseline risk, differ-
ent lengths of follow-up, differences in the outcomes
considered, or different clinical settings. The naive
approach of simply adding the raw totals of all con-
sidered trials as if the data came from one trial should
be avoided. The calculation of a pooled NNT should
be based upon a pooled effect measure, which should
be independent of the baseline risk. Using empir-
ical data, Furukawa et al. showed that the relative
effect measures OR and RR calculated by means of
an appropriate fixed or random effects regression
model often appear to be reasonably constant across
different baseline risks [24]. Meaningful NNTs can
be obtained by inserting the pooled RR or OR from
meta-analyses in formula (1) or (2). If there is vari-
ation in the baseline risk, different NNTs relevant to
specific patient subgroups should be calculated [20,
24, 53]. If there is evidence that even the relative
effect measures vary substantially between subgroups
in a meta-analysis, no meaningful pooled NNT can
be calculated.

Conclusion

The use of NNT as effect measure for the compar-
ison of risks between two groups has been advo-
cated in medical journals for several years [16, 33,
39, 43, 47, 50] but was recently criticized [53, 58]
or even rejected [28]. There seems to be a gap in
the assessment of the practical usefulness of NNTs
between some statisticians and clinicians [4, 28, 35].
Some mathematical arguments against the use of

NNTs, such as undesirable distributional properties,
are surely justified. However, strict mathematical
arguments lose their importance when NNT is consid-
ered as a way of presenting results, not as a tool for
statistical computations [4, 35]. A clear distinction
should be made between data analysis and subsequent
risk communication [54]. In the light of the effects on
consumers of the scale in which benefits and risks are
reported, it is frequently advisable to choose a statis-
tical model and a corresponding appropriate summary
measure for the task of data analysis, but alternative
effect measures to report the most important results.
For the translation of research findings to consumers,
the number needed to treat may represent a useful
tool, because it gives an intuitive impression of the
absolute effect of a therapy or an intervention. NNTs
contain the same information as risk differences, but
in the unit of patient numbers instead of probabilities,
which is easier to understand.

The attempt to extend and apply the simple NNT
concept developed for randomized clinical trials with
two independent groups and a binary outcome for
a variety of other settings led to the development
of more sophisticated approaches and procedures for
NNT calculation. Some useful approaches have been
developed, but situations remain for which further
work is needed to calculate meaningful NNTs, for
example, survival time studies or the combination of
NNTs for multiple outcomes. These extension and
adjustment procedures can alleviate problems with
NNTs. However, the extended and adjusted NNTs can
no more be considered as “one simple single yard-
stick” [31]. Particular caution is required to apply and
interpret NNTs adequately in practice, especially in
meta-analyses and in the presence of confounders.
Nevertheless, if handled appropriately, NNTs rep-
resent a useful communication tool to express the
absolute effects of interventions and exposures.
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