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SUMMARY

The number needed to treat (NNT) is a popular measure to describe the absolute effect of a new treatment
compared with a standard treatment or placebo in clinical trials with binary outcome. For use of NNT
measures in epidemiology to compare exposed and unexposed subjects, the terms ‘number needed to be
exposed’ (NNE) and ‘exposure impact number’ (EIN) have been proposed. Additionally, in the framework
of logistic regression a method was derived to perform point and interval estimation of NNT measures
with adjustment for confounding by using the adjusted odds ratio (OR approach). In this paper, a new
method is proposed which is based upon the average risk difference over the observed confounder values
(ARD approach). A decision has to be made, whether the effect of allocating an exposure to unexposed
persons or the effect of removing an exposure from exposed persons should be described. We use the term
NNE for the first and the term EIN for the second situation. NNE is the average number of unexposed
persons needed to be exposed to observe one extra case; EIN is the average number of exposed persons
among one case can be attributed to the exposure. By means of simulations it is shown that the ARD
approach is better than the OR approach in terms of bias and coverage probability, especially if the
confounder distribution is wide. The proposed method is illustrated by application to data of a cohort
study investigating the effect of smoking on coronary heart disease. Copyright q 2007 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The number needed to treat (NNT) is a popular measure to describe the absolute effect of a new
treatment compared with a standard treatment or placebo in clinical trials with binary outcome
[1]. Recently, NNT measures have also been developed for use in case–control [2, 3] and cohort
studies [3, 4]. As the term ‘number needed to treat’ makes no sense if the explanatory factor is an
exposure rather than a treatment, the terms number needed to be exposed (NNE) [4] and exposure
impact number (EIN) [3] have been proposed to apply the NNT concept in epidemiological studies.
Regardless of terminology, in the simplest case NNT measures (NNT, NNE, EIN) are calculated
by taking the reciprocal of the difference of two risks given by a 2×2 table. The use of simple
2×2 tables may be appropriate in randomized controlled trials. However, in observational studies
usually confounding factors have to be taken into account to minimize bias. Bender and Blettner
[4] have derived a method based upon multiple logistic regression analysis to perform point and
interval estimation of NNT measures with adjustment for confounding factors. In this approach,
adjusted NNT measures are calculated from the adjusted odds ratio (OR) and the mean risk of
unexposed persons estimated by means of logistic regression (OR approach). In this paper, a
new method is proposed, which takes the distribution of the considered confounders into account
by using the average risk difference (ARD) estimated from multiple logistic regression (ARD
approach). A simulation study is performed to compare the two approaches for calculating adjusted
NNT measures. The new ARD approach for computing point and interval estimates of adjusted
NNT measures is illustrated by using data of a cohort study investigating the effect of smoking
on coronary heart disease (CHD) in white males (Evans County Cohort Study).

2. ADJUSTED NNT MEASURES

2.1. OR approach

Let �0 and �1 be the proportions of a control and experimental (treatment, exposure) group, respec-
tively, which experience an outcome event. We consider the typical situation in epidemiological
studies, where the outcome is an adverse event such as death or disease and the risk of the exposed
persons is higher than that of the unexposed persons, i.e. �1>�0. In this case, NNE=1/(�1−�0)
represents the number needed to be exposed for one person to be harmed. More precisely, NNE
is the expected number of persons who must be exposed in order to have one additional event in
the group of exposed persons compared with the group of unexposed persons. If we denote the
odds ratio by OR=[�1×(1−�0)]/[�0×(1−�1)], then the relationship

NNE= 1

(OR−1)×�0
+ OR

(OR−1)×(1−�0)
(1)

between NNE, OR and �0 holds [4].
On the basis of formula (1), Bender and Blettner [4] derived a method to estimate NNE with

adjustment for confounding factors by using the observed unexposed event rate (UER) for �0
and the adjusted OR estimated by multiple logistic regression for OR (OR approach). Within
the framework of logistic regression, the adjusted NNE can be presented as a function of the
logistic regression coefficients [4]. Thus, the multivariate delta method [5] can be used to calculate
approximate confidence intervals (CIs) for the adjusted NNE [4, 6].
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2.2. ARD approach

The drawback of the OR approach is that the adjusted NNE is calculated only at one point of
the risk relation, namely for the observed UER. In the logistic regression model the risk of the
unexposed persons is dependent on the confounders. The observed UER represents the mean
of the risks of the unexposed persons over the distribution of the confounder values. As such,
the OR approach is appropriate only if there is a small variation of the risks around the mean.
However, if the distribution of the confounders is wide, this variation has to be taken into account
in estimating adjusted NNT measures. The main idea is to use the expected difference of the risks
with and without exposure concerning the distribution of the confounders. The reciprocal of the
expected risk difference (ERD) represents the adjusted NNT measure. However, as the distribution
of confounders may be different between unexposed and exposed persons, two different measures
are obtained.

Consider two populations of exposed and unexposed persons, where Z is the binary exposure
status with value z (1=exposed,0=unexposed). Let (X1, . . . , Xk) be a vector of k binary or
continuous confounder variables with values (x1, . . . , xk) and F◦(x1, . . . , xk) and F•(x1, . . . , xk)
the distribution functions for the unexposed and the exposed persons, respectively. Furthermore,
let �(x1, . . . , xk, z) describe the risk depending on the confounders and the exposure status. Then
the ERD concerning the exposure status can be defined for each population by

ERD◦ =
∫ ∞

−∞
·· ·

∫ ∞

−∞
(�(x1, . . . , xk,1)−�(x1, . . . , xk,0))dF

◦(x1, . . . , xk) (2)

ERD• =
∫ ∞

−∞
·· ·

∫ ∞

−∞
(�(x1, . . . , xk,1)−�(x1, . . . , xk,0))dF

•(x1, . . . , xk) (3)

It should be noted that in formula (2), �(x1, . . . , xk,1) represents a hypothetical risk, because in the
population of unexposed persons nobody is exposed. Accordingly, in formula (3), �(x1, . . . , xk,0)
is a hypothetical risk, because in the population of exposed persons nobody is unexposed.

The reciprocals of ERD◦ and ERD• represent appropriate NNT measures to describe the impact
of the exposure for the populations of unexposed and exposed persons, respectively. For application,
a decision has to be made whether the effect of the exposure should be described for the confounder
distribution of the unexposed or the exposed persons. We propose to use the term ‘number needed
to be exposed’ (NNE) for the first and the term ‘exposure impact number’ (EIN) for the second
situation, i.e.

NNE= 1

ERD◦ (4)

EIN= 1

ERD• (5)

NNE refers to the situation where the effect of an exposure in a population of unexposed persons
is described. On the other hand, the term EIN was proposed for situations where the effect of
removing an exposure from the population is considered [3]. Thus, the appropriate reference group
is the population of exposed persons. In the case of no confounders, NNE and EIN are identical.
However, in the case of confounding with different distributions of the confounders in unexposed
and exposed persons, NNE and EIN may be different.
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For practical applications, formulas to calculate the risks in dependence on the confounders and
the exposure status are required. Let n0 and n1 be the numbers of the unexposed and exposed
persons, respectively, i.e. n0+n1=n. Let zi and x1i , . . . , xki be the observed values of the expo-
sure Z and the confounders X1, . . . , Xk for i=1, . . . ,n0,n0+1, . . . ,n0+n1=n. By using logistic
regression in a prospective study design, the risk �i of the outcome event for person i is given by

�i = exp(�+�zi +�1x1i +·· ·+�k xki )

1+exp(�+�zi +�1x1i +·· ·+�k xki )
for i=1, . . . ,n0,n0+1, . . . ,n0+n1=n (6)

where �,�,�1, . . . ,�k are the logistic regression coefficients. If these coefficients were known, we
could calculate the hypothetical risk for each unexposed person if this person would be exposed by

�◦
i = exp(�+�+�1x1i +·· ·+�k xki )

1+exp(�+�+�1x1i +·· ·+�k xki )
for i=1, . . . ,n0 (7)

On the other hand, we could also calculate the hypothetical risk for each exposed person if this
person would not be exposed by

�•
i = exp(�+�1x1i +·· ·+�k xki )

1+exp(�+�1x1i +·· ·+�k xki )
for i=n0+1, . . . ,n0+n1 (8)

For large samples, the ERD in (2) and (3) can be approximated by the corresponding ARDs

ARD◦ = 1

n0

n0∑
i=1

(�◦
i −�i ) (9)

ARD• = 1

n1

n0+n1∑
i=n0+1

(�i −�•
i ) (10)

The estimation of ARD◦ and ARD• can be performed by substituting the usual estimates of the
logistic regression coefficients into formulas (6)–(8). The estimates of NNE and EIN are obtained
by taking the reciprocals of the estimates of ARD◦ and ARD• (ARD approach).

2.3. Confidence intervals

In general, the distribution of estimated NNT measures cannot be approximated by the normal
distribution [7, 8]. Thus, CIs for NNT measures are frequently calculated indirectly via CIs for the
corresponding risk difference [9]. Obviously, ARD◦ and ARD• represent functions of the logistic
regression coefficients. Thus, the standard errors of these risk differences can be calculated by using
the multivariate delta method [5] in the same way as described for the OR approach [4]. CIs for
the adjusted NNE and EIN can then be calculated by inverting and exchanging the corresponding
confidence limits for ARD◦ and ARD•. The unusual scale of the NNT measure, especially the
fact that the point of the zero effect is given by infinity, has to be taken into account. If the CI for
ARD encloses 0, the corresponding confidence region for the adjusted NNE or EIN is given by
the union of two half intervals [7, 9, 10]. For example, a 95 per cent CI for ARD of [−0.2,0.2]
corresponds to the confidence region of [5,∞[∪]−∞,−5] for NNE or EIN. Bender and Blettner
[4] with reference to Altman [10] proposed to write such confidence regions in the form of ‘NNEH
5 to ∞ to NNEB 5’, where NNEH (NNEB) means ‘number needed to be exposed for one person
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to be harmed’ (benefit). To avoid an additional abbreviation we use the abbreviation CI also for
confidence regions. An SAS/IML R© program to calculate adjusted NNEs and EINs with 95 per cent
CIs on the basis of multiple logistic regression for use in cohort studies is available on the Internet
(http://www.rbsd.de/SOFTWARE/nne ein.sas).

3. SIMULATION STUDY

In order to investigate the features of the new ARD approach in comparison with the OR approach,
a simulation study was performed. Without loss of generality, only the measure NNE (4) was
considered. We generated data similar to a typical cohort study in which the association between a
binary outcome Y and a binary exposure Z for a fixed follow-up time, say 5 years, is investigated
and a continuous confounder X , say age, is taken into account. The sample size was set to n=2000
(n1=1000 exposed and n0=1000 unexposed persons). Values for the considered variables were
generated as follows. The confounder X was normally distributed with varying standard deviations
�=1,2,3,5,8 and mean 40 for the exposed persons and mean 45 for the unexposed persons.
As the exposed persons are on average 5 years younger than the unexposed persons, age is a strong
confounder in this situation. The probability of an outcome event was modelled by means of the
logistic regression equation

�= exp(�+�z+�x)

1+exp(�+�z+�x)
(11)

with �=−10, �=1.0986 and �=0.1823, which means that the true OR for the exposure is given
by OR=3 and the true OR for the confounder age is given by OR=1.2 per year. The response Y
was generated by assigning the value 1 (event) with probability � and the value 0 (no event) with
probability 1−�. For each of the five situations with different values for � 1000 replications were
performed.

For each generated data set we calculated the true adjusted NNE on the basis of the true
logistic regression coefficients. For estimation of the model parameters the SAS R© procedure PROC
LOGISTIC was used (SAS R© version 9.1.3). On the basis of the estimates of the adjusted OR and
the logistic regression coefficients, we estimated the adjusted NNE with 95 per cent CIs by means
of the OR and the ARD approach, respectively. We expressed the relative bias of the adjusted
estimates by calculating the mean percent error (MPE)

MPE=100× 1

r

r∑
j=1

�̂ j −�

�
(12)

where � is the parameter of interest, �̂ j its estimate in replication j and r =1000 (number of
replications). It should be noted that the calculation of the MPE is not meaningful if negative
NNE estimates occur. Thus, we used only positive parameter estimates in formula (12), which is
a suitable approach if negative estimates occur only rarely. We calculated the empirical coverage
probability (CP) of the approximate 95 per cent CIs for the adjusted NNE (relative frequency of
CIs containing the true parameter) and the average width (AW) from the differences between the
upper and lower confidence limits. As the AW cannot be calculated if the upper confidence limit
is negative, this calculation was restricted to simulations with positive upper limits. Additionally,
the median width (MW) of all CIs (including those with a negative upper limit) was calculated,
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Table I. Bias of crude and adjusted NNE estimates for the OR and the ARD approach.

Adjusted estimates based upon logistic regression

True parameters Crude estimates OR approach ARD approach

� OR NNE OR NNE OR NNE MPE (per cent) NNE MPE (per cent)

1 3 5.27 1.21 43.9 3.20 6.16∗ 16.9∗ 6.20∗ 17.7∗
2 3 5.27 1.18 42.2 3.06 5.38 2.1 5.55 5.3
3 3 5.31 1.20 52.6 3.05 5.05 −4.8 5.42 2.1
5 3 5.48 1.20 46.2 3.02 4.76 −13.1 5.61 2.2
8 3 6.13 1.28 30.6 3.04 4.39 −28.5 6.21 1.2

The table shows the mean of the estimates based upon 1000 simulation runs of generated cohort data with
sample size n=2000 and the mean percent error (MPE) as a measure of the relative bias of the adjusted NNE
estimates; � represents the standard deviation of the normally distributed continuous confounder.∗In 1 simulation run a negative NNE estimate was obtained. This calculation is based upon 999 simulation
runs with positive NNE estimates.

Table II. Coverage probability and width of approximate 95 per cent confidence intervals or regions for
the adjusted NNE based upon the OR and the ARD approach.

OR approach ARD approach

� True NNE CP (per cent) AW MW CP (per cent) AW MW

1 5.27 94.2 50.88∗ 17.17 94.2 31.16† 16.42
2 5.27 93.5 6.57 5.39 93.6 6.32 5.18
3 5.31 94.9 3.80 3.49 95.5 3.71 3.41
5 5.48 82.0 2.88 2.70 95.2 3.00 2.83
8 6.13 34.1 2.41 2.27 95.6 3.00 2.84

The table shows the empirical coverage probability (CP), the average width (AW) and the median width (MW)
of approximate 95 per cent confidence intervals or regions (CIs) for the adjusted NNE based upon 1000
simulation runs of generated cohort data with sample size n=2000; � represents the standard deviation of the
normally distributed continuous confounder.∗In 172 simulation runs a negative upper confidence limit for the adjusted NNE was obtained. This calculation
is based upon 828 simulation runs with positive upper confidence limits.

†In 171 simulation runs a negative upper confidence limit for the adjusted NNE was obtained. This calculation
is based upon 829 simulation runs with positive upper confidence limits.

which was possible because the proportion of negative upper confidence limits was lower than 50
per cent in all cases. The main results of the simulations are summarized in Tables I and II.

Owing to the strong confounding effect of age, the crude estimates of OR and NNE show a
large bias so that the crude estimates are unacceptable. The adjusted ORs estimated by means
of multiple logistic regression still show a small bias which is, however, negligible in practice
(Table I). The two methods for estimating the adjusted NNE show a large upward bias in simulation
setting 1 with a very low variability of the continuous confounder (�=1). However, this situation
is unrealistic, because this would mean that 95 per cent of the exposed persons are between 38 and
42 years of age and 95 per cent of the unexposed persons are between 43 and 47 years of age (or
a similar confounder). A regression model with a continuous covariate having such a low overlap
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is unstable and its estimation should be avoided. Nevertheless, the empirical CP is quite close to
the nominal level of 95 per cent in this situation for both approaches (Table II). With increasing �
the upward bias of the adjusted NNE estimates disappears for both methods. For the OR approach
only situations 2 and 3 (�=2,3) have acceptable bias values (|MPE|<5 per cent), but for larger
values of � the upward bias switches to a downward bias reaching the bias of MPE=−28.5
per cent for the situation with very large confounder variability (�=8). On the other hand, the
ARD approach shows an upward bias in all cases which decreases with increasing � and is below
5 per cent if the confounder variability is not very small (Table I).

With increasing � the empirical CP for the OR approach decreases and reaches only 34.1
per cent in situation 5 (�=8) because of the strong downward bias. On the other hand, the ARD
approach shows a CP quite close to the nominal level of 95 per cent in all cases. With the exception
of situation 1 (�=1) the AW and MW of the CIs are small in all cases for both methods. The
average CI width of the ARD approach is lower than that of the OR approach with the exception
of the cases where the OR approach shows a large downward bias and an unacceptably low CP
(Table II).

In summary, the OR approach leads to reasonable results only in the case of continuous
confounders with small variability, whereas the new ARD approach is valid in all cases where the
underlying multiple logistic regression model has adequate features.

4. EXAMPLE: THE EVANS COUNTY COHORT STUDY

For illustration, we reanalyse the data of the Evans County Cohort Study [11]. In this study,
609 white males were followed for 7 years to investigate the effect of several covariates on the
outcome CHD. We applied the logistic regression model as described by Kleinbaum and Klein
[11], but focus on smoking as exposure variable and use catecholamine level, age, cholesterol,
electrocardiogram abnormality and high blood pressure as confounders. Additionally, the two
interaction terms between catecholamine level and cholesterol and between catecholamine level
and high blood pressure are included (see [11]). The estimated adjusted OR for smoking estimated
by the corresponding multiple logistic regression model is given by ÔR=2.17 (95 per cent CI:
1.14–4.12, p=0.018).

To describe the absolute effect of smoking on the outcome CHD adjusted NNT measures
can be used. By applying the ARD approach the estimated ARD based upon the distribu-
tion of confounders of the non-smoking males is given by AR̂D◦ =0.0597 (SE=0.0235, 95
per cent CI: 0.0138–0.1057) leading to NN̂E=16.74 (95 per cent CI: 9.46–72.67). The esti-
mated ARD based upon the distribution of confounders of the smoking males is given by
AR̂D• =0.0573 (SE=0.0223, 95 per cent CI: 0.0135–0.1011) leading to EÎN=17.44 (95 per cent
CI: 9.89–73.81).

These results mean that on average 16–17 males from the population of non-smoking males
are needed to be exposed to smoking to observe one extra case of CHD in 7 years. On the
other hand, on average 17–18 males from a population with a confounder distribution equal
to that of the smoking males are needed for one extra case of CHD in 7 years compared
with non-smoking males with the same confounder distribution. As there is not much differ-
ence between NNE and EIN in this example, we can say that on average, among 16–18 males
followed for 7 years one case of CHD can be attributed to smoking adjusted for all considered
confounders.
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5. DISCUSSION

The use of NNT measures to describe the absolute effect of treatments or exposures has increased
in the past years [1]. Especially, the demand for NNT measures also in non-randomized studies
requested the development of methods to estimate adjusted NNT measures. Unfortunately, although
multiple logistic regression is routinely used to estimate adjusted ORs, in current practice adjusted
ORs are frequently complemented by crude NNT estimates in medical journals. For example,
in the percutaneous coronary intervention (PCI)-CLARITY trial [12] the effect of clopidogrel
pretreatment before PCI compared with clopidogrel treatment initiated at the time of PCI on the
composite outcome cardiovascular death, recurrent myocardial infarction or stroke was investigated.
Because this trial does not represent a randomized study, multiple logistic regression was used to
adjust for possible selection bias [12]. Although adjusted ORs based upon the multiple logistic
regression model were presented, calculation of NNTs was performed on the basis of the crude
event rates without adjustment for possible selection bias. The reason for such invalid presentations
of study results is probably that established statistical methods to calculate adjusted effect measures
are available for relative effect measures such as the OR or the hazard ratio but not for NNT
measures. This underlines the need to develop and apply statistical methods for the calculation of
adjusted NNT measures.

In this paper, a new approach to estimate adjusted NNT measures based upon the reciprocal of
ARDs within the framework of multiple logistic regression is developed. The method is applicable
in all prospective studies where multiple logistic regression is an adequate method for data analysis,
such as cohort studies, non-randomized controlled trials and randomized controlled studies with
fixed follow-up time, in which the consideration of multiple predictor variables seems to be
appropriate. We have shown by means of simulations that the ARD approach is preferable to the
formerly proposed OR approach. The OR approach does not take the variability of continuous
confounders into account and leads to a downward bias of NNTs (overestimation of the effect) if
the confounder distribution is not quite narrow. The ARD approach outperforms the OR approach
in terms of bias of the point estimates as well as CP of 95 per cent CIs. In cases with adequate
CP, the AW and MW of the 95 per cent CIs of the ARD approach are slightly smaller than those
of the OR approach showing a better estimation precision of the new method.

One disadvantage of using NNT measures is given by the unusual scale leading to the possible
problem of negative estimates and negative upper confidence limits. In the case of negative param-
eter estimates the usual formulas to calculate bias are not applicable and in the case of negative
upper confidence limits the width of the CIs cannot be calculated. In this paper we restricted these
calculations to simulations with positive parameter estimates and positive upper confidence limits,
which was suitable because negative estimates and negative upper confidence limits occurred only
in very few simulation runs. In simulation studies considering other data situations, e.g. with small
effects or low sample size, the problem may be more pronounced. However, in this paper the main
aim was to propose a method to calculate adjusted NNT measures in situations where the use of
NNT measures is suitable (large exposure effect, sufficient sample size).

Absolute risk differences and NNT measures are frequently sensitive to changes of covariate
values and changes of the distribution of covariates in the considered population. This important
issue should be taken into account when NNT measures are used to present study results. An
illustrative example is given by Bender and Blettner [4], who calculated varying NNEs between
70 and 6 for age values between 30 and 50. For application of the ARD approach in epidemiology
and public health research to calculate adjusted NNT measures, a decision has to be made whether
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the exposure effect should be described for the confounder distribution of the unexposed persons
(NNE) or that of the exposed persons (EIN). The use of NNE is appropriate if the effect of allocating
an exposure to unexposed persons should be described. The second alternative is appropriate in the
situation where the effect of removing the exposure from the exposed persons in the population
is considered. This is the same rationale as in situations where the population attributable risk
is applied [13]. Alternative impact numbers to describe the absolute effect of exposures from a
population point of view have been proposed [3, 14]. Methods for interval estimation of impact
numbers on the basis of simple 2×2 tables have been summarized [15]. If these impact numbers
are to be applied in the case of confounding, the ARD approach developed here should be adapted
to perform point and interval estimation of adjusted impact numbers.

An alternative to the use of logistic regression is given by the linear probability model [16].
An advantage of this model is that risk differences can be estimated directly. Thus, adjusted NNT
measures as inverse values of risk differences are independent of the confounder values so that
the linear probability model is an interesting model for the estimation of adjusted NNT measures,
especially if a logistic regression model seems to be inappropriate for the considered data. The
choice of a specific model should be based upon a careful investigation of the goodness of fit
[11, 17, 18]. In this paper, a method is developed to perform point and interval estimation of
adjusted NNT measures within the framework of multiple logistic regression, which represents the
most frequent regression model in cohort studies with fixed follow-up times. We will consider the
linear probability model as basis for the estimation of adjusted NNT measures in future studies.

The current practice of presenting adjusted ORs together with crude NNTs in medical research
papers should be avoided. If—supplementary to relative effect measures—NNT measures are used
to present study results and if it is required to take confounders into account, the use of adjusted
NNT measures is required. On the basis of our simulation study, the proposed ARD approach is
an appropriate method to estimate adjusted NNT measures in all situations where multiple logistic
regression is an adequate method for data analysis.
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