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Abstract

The number needed to treat (NNT) is a popular summary statistic to describe the absolute effect of a new treatment compared with a standard
treatment or control concerning the risk of an adverse event. The NNT concept can be applied whenever the risk of an adverse event is compared be-
tween two groups; for the comparison of exposed with unexposed subjects in epidemiological studies, we propose the term “number needed to be ex-
posed” (NNE). Whereas in randomized clinical trials NNT can be calculated on the basis of a simple 2X2 table, in epidemiological studies methods
to adjust for confounders are required in most applications. We derive a method based upon multiple logistic regression analysis to perform point and
interval estimation of NNE with adjustment for confounding variables. The adjusted NNE can be calculated from the adjusted odds ratio (OR) and
the unexposed event rate (UER) estimated by means of an appropriate multiple logistic regression model. As UER is dependent on the confounders,
the adjusted NNEs also vary with the values of the confounding variables. Two methods are proposed to take the dependence of NNE on the values
of the confounders into account. The adjusted number needed to be exposed can be a useful complement to the commonly presented results in epide-

miological studies, such as ORs and attributable risks. © 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

The number needed to treat (NNT) is a popular summary
statistic to describe the absolute effect of a new treatment
compared with a standard treatment or control concerning
the risk of an adverse event [1]. It was first introduced for
use in randomized placebo-controlled clinical trials [2] and
then proposed as summary measure for systematic reviews
[3]; it was extended to the measure “number needed to
screen” to compare strategies for disease screening [4] and
was recently also applied in case-control studies to express
the magnitude of adverse effects [5]. Although NNTs may
be misleading when the compared treatments have their ef-
fects over different periods of time [6] or when NNTs are
pooled in meta-analyses with varying baseline risks [7], the
careful and cautious application of NNTs represents a use-
ful way of presenting results. In epidemiological studies, the
goal is frequently to compare exposed versus unexposed
persons rather than a comparison of a new with a standard
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treatment or placebo. Hence, the NNT concept can be used
in epidemiology as “number needed to be exposed” (NNE).
Due to the lack of randomization, an important task in epi-
demiological studies is the consideration of confounding
variables. In this paper, it is shown that NNEs adjusted for
confounding variables can be calculated within the frame-
work of multiple logistic regression analysis.

2. The “number needed to be exposed”

The NNT concept can be applied in any trial in which
two groups are compared concerning a binary response
variable. However, if the two groups are not defined by
treatment versus control, the term “number needed to treat”
makes no sense. Therefore, Feinstein proposed the term
“number needed for one extra effect” to define a measure
that is not dependent on the type of agent or the direction of
the effect [8]. However, we find this terminology too gen-
eral and vague. In epidemiology, a common situation is the
comparison of exposed versus unexposed persons regarding
an adverse event such as death or cancer. To apply the NNT
concept in epidemiological studies we propose the term
“number needed to be exposed” (NNE), which is the analogous
definition of the NNT measure when the considered agent is
exposure rather than treatment. This definition makes it pos-
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sible to adopt the terminology suggested by Altman to dis-
tinguish between harmful and beneficial agents [9]. Thus, we
use the abbreviations number needed to be exposed for one
additional person to be harmed (NNEH) or benefit (NNEB)
when it is necessary to indicate the direction of the effect.

In the simple case of a 2X2 table of frequencies, NNEs are
calculated as follows. If the exposed event rate (EER) is higher
than the unexposed event rate (UER), the absolute risk increase
(ARI) is ARI = EER — UER. In the case of a beneficial ex-
posure effect, the absolute risk reduction (ARR) is ARR =
UER — EER. The measures NNEH and NNEB are given by
the reciprocals of ARI and ARR, respectively. In the case of a
harmful exposure, NNEH is the estimated average number
of persons needed to be exposed for one additional case of
disease or death compared with the unexposed persons. Note
that in epidemiology, the difference of two risks usually is
called excess risk rather than ARI or ARR [10].

3. NNEs derived from cohort studies

If the design of a study allows an unbiased comparison of
the observed crude event rates, the NNT concept of random-
ized clinical trails can be easily transferred to NNEs for use
in epidemiological studies simply by changing the name.
However, in observational studies, the specification and cal-
culation of appropriate event rates is more difficult than in
experimental randomized studies. In randomized clinical
trials, all calculations concerning NNT can be based on a
simple 2X2 table because systematic differences between
the groups are avoided due to random allocation [11]. In ob-
servational studies of classical epidemiology, randomiza-
tion is usually not possible, so that confounding factors have
to be taken into account to minimize bias. Whereas this is
generally accepted for the estimation of odds ratios (ORs)
and hazard ratios, at present NNTs are usually estimated
from crude risk differences without adjustment for con-
founding factors due to the lack of methods to calculate ad-
justed NNTs. In epidemiology, an adjustment for confound-
ing factors is frequently performed by means of multiple
logistic regression leading to an adjusted OR as relative ef-
fect measure [12]. Within the framework of logistic regres-
sion, the adjusted OR is constant over the distribution of the
considered confounding factors; on the other hand, the event
rates and their differences are dependent on the values of
the confounders. Thus, NNEs also vary with the values of
the confounding variables, which has to be taken into ac-
count when NNEs are estimated.

An adjusted NNE can be calculated by means of the rela-
tionship

1 s OR
(OR—1)xUER ' (OR—1) x (I — UER)

NNEH = (D
where OR > 1 (harmful exposure) is the adjusted OR, and
UER is the unexposed event rate (see Appendix for derivation).
If OR < 1 (beneficial exposure), the corresponding NNEB is

given by NNEB = —NNEH. A similar formula was recently
proposed to express the magnitude of adverse effects by means
of NNTs in case-control studies [5]. However, the second term
of the sum in equation (1) was left out. The resulting simpler
equation can be used only to approximate equation (1) in situa-
tions where the considered disease is rare, such as case-control
studies. In general, however, equation (1) represents the correct
relationship between NNT measures and the OR and should be
used at least in all situations where the rare disease assumption
does not hold [13]. Whereas in case-control studies an external
source is required to estimate UER [5], in prospective cohort
studies UER can be calculated from the logistic regression
model. However, the event rates are dependent on the values of
the confounding factors leading to different possible NNE val-
ues. Hence, methods are required that take the dependence of
the adjusted NNEs on the values of the confounding factors
into account. Two alternative methods are described below
with a further discussion of this issue.

4. Confidence intervals for adjusted NNEs

The distribution of estimated NNEs can frequently not be
approximated by the normal distribution [14]. Hence, confi-
dence intervals (CIs) for NNEs are calculated indirectly via Cls
for ARI or ARR [15]. Within the framework of logistic regres-
sion analysis applied to prospective cohort data, risk differ-
ences between the exposed and unexposed persons can be ex-
pressed as functions of the logistic regression coefficients.
Thus, standard errors and ClIs for risk differences can be calcu-
lated by means of the multivariate delta method [16] (see Ap-
pendix for a description of the method). A SAS/IML [17] pro-
gram to calculate adjusted NNEs with ClIs is available on the
internet  (http://www.uni-bielefeld.de/~rbender/SOFTW ARE/
nne_logistic.sas) or can be obtained from the first author. This
method takes the estimation uncertainties of both OR and UER
into account. This is not possible in case-control studies, where
an external estimate of UER is required. The uncertainty of the
estimation of UER is disregarded in the calculation of CIs for
the number needed to treat in case-control studies [5].

5. Examples

The proposed method of calculating adjusted NNEs in ep-
idemiological studies is illustrated by means of two exam-
ples. In the first example generated data with a known true
OR are used to demonstrate the bias with regard to NNE due
to confounding by comparison of the crude and adjusted
NNE estimates. Moreover, it is shown clearly that adjusted
NNE:s vary with the values of the confounding factors. Two
alternative ways to deal with this issue are presented and ex-
plained. In the second example, observed data are used to ex-
plain the meaning of adjusted NNEs in a real situation.

5.1. Generated data: Effect of exposure adjusted for age

Suppose in a cohort study 1,000 persons are followed for
the same time, say 5 years. Let Y be a binary response of an
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Table 1
Simple 2X2 table of exposure and response of artificial cohort data

Adverse event

Yes No Total

Exposure
Yes 130 (26.3%) 365 (73.4%) 495
No 149 (29.5%) 356 (70.5%) 505
Total 279 721 1,000

adverse event, Z a binary exposure variable, and X a continu-
ous confounding variable, say age. Values for these variables
were generated as follows. The exposure Z has values 1 and 0
each with probability 0.5; X is normally distributed with stan-
dard deviation (SD) 5 and mean 41 for the exposed and mean
45 for the unexposed persons. Hence, if X is interpreted as
age, the unexposed persons are on average 4 years older than
the exposed persons. The probability of an adverse event was
modeled following the logistic regression model

_ _exp(o+yz+Bx)
1 +exp(o+ vz + Bx)

with a« = —10, v = 0.693, and B = 0.2, which means that
the true OR for the comparison of the exposed versus unex-
posed persons is exp(0.693) = 2. The response variable was
generated by assigning the value 1 (event) with probability p
and the value 0 (no event) with probability 1 — p.

In the following the analysis of one arbitrary set of gener-
ated data is shown. If only the simple 2X2 table of these data
(Table 1) is considered, the exposure has a nonsignificant
beneficial effect (crude OR, 0.85; 95% CI, 0.65-1.12; P =
0.253). The crude NNEB is 31 (95% CI, NNEB 11 to *eo to
NNEH 43). However, this result is seriously biased because
the confounding factor X is not taken into account. By using
multiple logistic regression (Table 2), the estimated adjusted
OR is 2.005 (95% CI, 1.43-2.81; P = 0.0001), which is close
to the true OR of 2 due to the large sample size of n = 1,000.
By means of equation (1), using the adjusted OR (2.005) and
the event rate over the age distribution among the unexposed
persons (UER 0.295), the adjusted NNE is NNEH = 6.2
(95% CI, 4-12). Thus, on average, six persons from a popula-
tion with an age distribution equal to that of the unexposed
persons are needed to be exposed for one extra event.

These results are illustrated in Fig. 1. It is required to
specify age values for which NNEH should be calculated.
One possibility is to take the mean of the risks of the unex-

Table 2
Results of the multiple logistic regression model applied to the artificial
cohort data

Logistic Standard Odds  95% confidence
coefficient error P value ratio interval

Intercept —10.3727 0.8646 0.0001
Z (exposure) 0.6955 0.1718 0.0001 2.005 1.43-2.81
X (age) 0.2054 0.0182 0.0001 1.228 1.18-1.27

Hosmer-Lemeshow goodness-of fit test: P = 0.761.
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Fig. 1. Estimation of the absolute risk increase (ARI) for the risk compari-
son of exposed versus unexposed persons adjusted for age based upon
logistic regression (artificial data). EER, exposed event rate; UER, unex-
posed event rate; Ageygg, value of age corresponding to UER.

posed persons and calculate NNEH for the corresponding age
value (ageygg; Fig. 1). This leads to the event rate over the age
distribution among the unexposed persons. Then the event rate
of the exposed persons is calculated for the same age by
means of the logistic regression model. The difference of these
risks represents the adjusted ARI (Fig. 1), and the reciprocal
of ARI is the adjusted NNEH of 6.2 calculated above.
Another possibility is to calculate NNEH for some fixed
age values (Table 3). NNEH varies from 70 for age 30 to 6
for age 50 to 17 for age 60 years. These results give an im-
pression about different absolute effects of the exposure in
cohorts with varying age distributions. Note, however, that
the considered low- and high-age values are located at the
extreme tails of the age distribution of the unexposed per-
sons, which was normal with mean 45 *= 5 years (mean =*
SD). Within the range of say, mean = SD (40-50 years),
the differences of the NNEH values are quite smaller than
for the whole age distribution (Table 3). The NNEH value
for the mean age of 45 years (6.7) is approximately the

Table 3
Event rates, RR, OR, ARI, and NNEH for different age values estimated
from the artificial cohort data

Age (years)  EER UER RR OR ARI NNEH

30 0.0289  0.0146 1976 2.005 0.0143  70.1
35 0.0767  0.0398 1928 2.005 0.0369 27.1
40 0.1883  0.1037 1.816 2.005 0.0846 11.8
45 0.3931 0.2442 1.610 2.005 0.1489 6.7
50 0.6440 0.4743 1358 2.005 0.1697 59
55 0.8348 0.7159 1.166  2.005 0.1189 8.4
60 0.9338 0.8756 1.066 2.005 0.0582 17.2

Abbreviations: RR, risk ratio; OR, odds ratio; ARI, absolute risk in-
crease; NNEH, number needed to be exposed for one additional person to
be harmed; EER, exposed event rate; UER, unexposed event rate.



528 R. Bender and M. Blettner / Journal of Clinical Epidemiology 55 (2002) 525-530

Table 4

Descriptive statistics for retinopathy status and risk factors of type 1 diabetic patients

Retinopathy at follow-up

Total
Variable Label No (n = 388) Yes (n = 225) (n = 613)
Z Smoking during follow-up (yes/no) 197 (50%) 128 (57%) 325 (53%)
X, Diabetes duration, y 12.7 (6.7) 19.0 (6.8) 15.0 (7.4)
X, Squared diabetes duration, y? 204 (236.5) 408 (269.5) 279 (267.6)
X3 Glycosylated hemoglobin, % 7.5(1.2) 8.2(1.3) 7.8 (1.3)
Xy Diastolic blood pressure, mm Hg 78.6 (6.6) 82.6 (7.2) 80.1 (7.1)

Data are given as means (SD) or numbers (%).

same as the NNEH value corresponding to the event rate
over the age distribution among the unexposed persons
(6.2).

5.2. Real data: smoking and diabetic retinopathy

Miihlhauser et al. analyzed the association of several risk
factors with the development of diabetic retinopathy [18]. In
short, 613 type 1 diabetic patients were followed for 6 years
to investigate the effect of smoking (Z) on the response ret-
inopathy (Y), adjusted for the risk factors diabetes duration
(X)), quadratic term of diabetes duration (X,), glycosylated
hemoglobin (X3), and diastolic blood pressure (X,). The
quadratic effect of diabetes duration has to be taken into ac-
count because the risk of retinopathy increases until 25
years of diabetes duration and decreases thereafter [19]. In
Table 4 a descriptive overview of the data is given.

The data analysis based upon the simple 2X2 table (Ta-
ble 5) leads to nonsignificant results. The crude OR is 1.28
95% CI, 0.92-1.78; P = 0.144), and the crude number
needed to be exposed is NNEH = 17.5 (95% CI, NNEH 8
to =« to NNEB 52). However, these results are biased be-
cause the confounding variables are not taken into account.
The adjusted results of the multiple logistic regression
model are given in Table 6. The Hosmer-Lemeshow test
[12] (P = 0.581) as well as graphical checks indicated that
this model has an adequate goodness of fit [19]. The ad-
justed estimated effect measures for smoking are OR 1.52
(95% CI, 1.004-2.285; P = 0.048) and NNEH = 10.2 (95%
CI, 5-4,169). On average, among 10 smoking diabetic pa-
tients, one additional patient will develop retinopathy after 6
years compared with nonsmoking patients. This result holds
for a population of diabetic patients with distributions of the
covariables equal to the nonsmoking patients of the cohort.
However, the uncertainty of this estimation is huge because
the upper confidence limit for NNEH is 4,169. This large

Table 5
Simple 2X2 table of exposure and response of the retinopathy data
Retinopathy
Yes No Total
Smoking
Yes 128 (39.4%) 197 (60.6%) 325
No 97 (33.7%) 191 (66.3%) 288
Total 225 388 613

upper limit reflects that the P value is very close to the sig-
nificance level of 0.05. Note that the lower confidence limit
(1.004) of the adjusted OR is also very close to 1. Neverthe-
less, the adjusted NNEH based on logistic regression shows
a significant harmful effect of smoking, which could not be
demonstrated by means of the crude number needed to be
exposed (NNEH = 17.5) obtained on the basis of the simple
2X2 table.

6. Discussion

The use of NNT as effect measure for the comparison of
risks between two groups has been advocated in medical
journals for several years [1-3,5,20,21] but was recently crit-
icized [6,7,22,23] or even rejected [24]. As pointed out by
Walter, a clear distinction should be made between data
analysis and subsequent risk communication [25]. In the
framework of logistic regression, which is one of the most
frequently used statistical methods in epidemiology and pub-
lic health [26,27], the OR is the leading measure for pur-
poses of data analysis. On the other hand, the number needed
to treat is frequently a useful way of presenting results and
plays a role in risk communication to clinicians, patients, and
the public [28]. However, the effects of presenting study re-
sults in terms of absolute effect measures such as NNT on
actual clinical practice are still unknown [29].

In the common situation of the comparison of risks be-
tween exposed and unexposed persons in epidemiology, the
NNT concept can be used as NNE to present results. However,
to apply this measure adequately in epidemiologic studies,
methods to adjust for confounding variables are required. In
this paper, we have derived a method based on logistic re-

Table 6
Results of the multiple logistic regression model applied to the
retinopathy data

Logistic Standard Odds  95% confidence
coefficient  error Pvalue ratio interval
Intercept  —13.3203 1.5111 0.0001
Smoking 0.4154  0.2097 0.0476  1.515 1.004-2.285
X, 0.4083  0.0655 0.0001
X, —0.0075  0.0016 0.0001
X3 0.4292  0.0835 0.0001
X, 0.0614  0.0152 0.0001

Hosmer-Lemeshow goodness-of fit test: P = 0.581.
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gression analysis to estimate adjusted NNEs with CIs. Two
alternative methods are proposed to take the dependence of
the adjusted NNEs on the values of the confounding vari-
ables into account. A SAS/IML [17] program is available to
perform the corresponding calculations.

The proposed method is applicable in prospective cohort
studies with fixed follow-up time. Other application situa-
tions are controlled clinical trials in which randomization is
impossible and randomized trials in which an adjustment
for confounding factors seems to be appropriate despite ran-
domization. The method is not applicable in studies with
varying follow-up times, which require methods for sur-
vival data [30].

The adequacy of the proposed method depends heavily
on the goodness-of-fit of the logistic regression model. If
the model used is not a good description of the considered
data, the results are questionable. Hence, before adjusted
ORs and adjusted NNEs are calculated on the basis of logis-
tic regression, the goodness-of-fit of the model should be in-
vestigated carefully [31].

The NNEH answers the question how many people are
needed to be exposed for one additional person to be harmed.
Hence, we also know how many people must be protected
against the exposure for one additional person to benefit.
Thus, NNEH is a useful measure especially if the exposure
is modifiable (e.g., stopping smoking or rehabilitating houses
with high radon load). In the context of public health, it may
be useful to incorporate the prevalence of exposure like the
population attributable risk. This is possible by applying the
generalizations of NNT proposed by Heller and Dobson
[32] to the adjusted NNE.

In conclusion, the NNE is a useful complement to the
commonly presented results in epidemiological studies, such
as ORs and attributable risks. Adjusted NNEs with CI can be
calculated within the framework of logistic regression analysis.

Appendix 1
Derivation of the formula for NNEH

Let EER be the event rate among the exposed and UER the
event rate among the unexposed persons, then conceptually

1 1

NNEH = ARI ~ EER - UER’
EER
RR = OER’

OR = EER x (1 — UER)
" UER x (1 — EER)
The following relation between RR and OR is valid
[33,34]

OR

RR = T UER+ ORXUER

Thus,

1 1

EER—UER _ EER
ﬁ x UER — UER

NNEH

1
RR x UER - UER

1

OR

T_UER + OR X UER < UER ~UER
1

~ OR x UER — UER x (1 — UER + OR x UER)
1— UER + OR x UER

1 - UER + OR x UER
OR x UER x (1 — UER) — UER x (I — UER)

_ 1-UER+ORXUER
~ (OR—1)x UER x (1 —- UER)

1 - UER
(OR—1) x UER x (1 - UER)

. OR x UER
(OR—1)x UER x (1 — UER)

_ 1 .\ OR
" (OR-1)xUER = (OR—1)x (I - UER)

Calculating CIs for ARI
The absolute risk increase can be calculated by

1 (OR-1)XUERX(1-UER)

Rl = NNEH 1 - UER + OR x UER

_ UER x (1 -UER) x (OR — 1)
- 1+ UER X (OR - 1)

(i.e., ARI is a function of OR and UER). In logistic regres-
sion applied to prospective cohort data, the probability of an
event is a function of the exposure and all considered cova-
riables. Let p be the probability of an event, Z the binary ex-
posure (Z = 1 if a person is exposed and Z = 0 if a person is
unexposed), and Xi,...,X, are k additional continuous or bi-
nary covariables for which the effect of the exposure should
be adjusted. By using logistic regression the risk p can be
written as

_ exp((x+YZ+lel+"'+kak)
T l4exp(o+ Yz 4 Bix ...+ BiXy)

where o,v,B,...,0, are the logistic regression coefficients.
Let n, be the number of unexposed persons in the sample
and p; the risk of the i unexposed person fori = 1,..., n,.
The adjusted OR for the comparison of the exposed versus
unexposed persons as well as the UER over the distribution
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of Xj,...,X; among the unexposed persons can be expressed
as functions of the logistic regression coefficients, namely

OR = exp(7y) and

1 n,
UER = —3'p;

Yiz1

Thus, the absolute risk increase itself is a function of the
logistic regression coefficients. Statistical software for lo-
gistic regression usually provides the covariance matrix for
the estimated logistic regression coefficients, so it is possi-
ble to calculate the standard error (SE) of the estimated ARI
by means of the multivariate delta method [16]. For these
calculations matrix operations are required.

Let B be the covariance matrix of the estimated logistic
regression coefficients and A be the row vector of the partial
derivatives of ARI expressed as function of the logistic re-
gression coefficients. The SE of the estimated ARI can be
calculated by

SE(ARI) = JABA'
and an approximate 95% CI for ARI can be calculated by
ARI + 1.96 x SE(ARI)
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