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Nonlinear regression is widely used in pharmacokinetic and pharmacodynamic modeling by apply-
ing nonlinear ordinary least squares. Although the assumption of independent errors is frequently
not fulfilled, this has .received scant attention in the pharmacokinetic literature. As in linear
regression, leaving correlation of errors out of account leads 1o an underestimation of the standard
deviations of parameter estimates. On the other hand, the use of models that accommodate
correlated errors requires nore care and more computation. This paper describes a method to fit
log-normal functions to individual response curves containing correlated errors by means of statist-
ical software for time series. A sample computer program is given in which the SAS/ETS procedure
MODEL is used: In particular, the problem of finding appropriate starting values for nonlinear
iterative algorithms is considered. A linear weighted least squares approach for initial parameter
estimation is developed. The adequacy of the method is investigated by means of Monte Carlo
simulations. Furthermore, the statistical properties of nonlinear least squares with and without
accommodating correlated errors are compared. Time action profiles of a long-acting insulin
preparation injected subcutaneously in humans are analyzed to illustrate the usefulness of the
method proposed.

KEY WORDS: nonlinear regression; pharmacodynamic data; log-normal curves; correlated
errors; nonlinear least squares; starting values; simulation.

INTRODUCTION

A general representation of individual pharmokinetic or pharmaco-
dynamic data is a nonlinear regression model

y=f(t, 0)+u ()
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where y, are the measured curve points, f is the time, f is a nonlinear time
function, @ is a vector of unknown parameters and u, are random errors.
In standard nonlinear regression using ordinary least squares (OLS) it is
assumed that the u, are independent and identically distributed with mean
zero and variance o2, in symbols

u, iid(0, o2) (2)

Some important statistical considerations involved in the fitting of nonlinear
regression equations in pharmacokinetic applications are treated by
Boxenbaum et al. (1). Several generalizations of the stringent assumption,
Eq. (2) are possible. The most important are heteroscedastic errors, i.e.,
unequal error variances, and correlated errors. Heteroscedasticity is widely
considered in the pharmacokinetic literature (2,3) entailing the development
of a special estimation method called extended least squares (ELS) (4).
Although this method is sensitive to outliers and model misspecification and
could lead to an inconsistent estimator (5), the application of ELS is popular
in pharmacokinetic research. While the second important generalization of
Eq. (2), i.e., allowing correlated errors, appears frequently in econometrics,
environmetrics and ‘other fields, it has received only little attention in the
pharmacokinetic literature. It is also possible that both violations of the iid
assumption occur together, which makes it difficult to model the error struc-
ture adequately.

A case in which the independence of errors cannot be assumed, is
presented by pharmacodynamic studies using the euglycemic glucose-clamp
technique (6). In such studies blood glucose concentration is held constant
after subcutaneous injection of insulin preparations by varying glucose
infusion rates (GIR) automatically (Biostator) or manually. This permits
an indirect measurement of the time action profiles of the insulin preparation
studied. The glucose-clamp algorithm employed by the Biostator results in
correlated data. An example of such a GIR curve is shown in Fig. 3 (see
the example below for more details).

In this paper we demonstrate that methods for time series analysis (7,8)
can be applied to correlated pharmacodynamic data such as GIR curves.
The serial dependence of data values is taken into account by modeling the
errors as stationary autoregressive (AR) processes of order p

P
u=> @Qu-;te 3)
j=1
where &, iid(0, o), @; for j=1,...,p are the AR parameters, and (=
1, ..., n are equally spaced time points. In practice, a value for the order p
must be chosen. For this, the Box-Jenkins method (7,8) can be applied. A
brief overview of this method is given by Seber and Wild (9).
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Since GIR data represent unimodal curves, gamma and log-normal
functions (10,11) have some advantages over the more commonly used poly-
exponentials (12,13). In this paper the log-normal function

f([):at—‘ e—b['OE(’)“lz (4)

is used, which has desirable properties to describe GIR curves (13). The use
of this function yields Model Eq. (1) with Eq. (4) inserted for f, 8= (a, b, ¢},
and Eq. (3) for u,. Taking Eq. (3) into account is more accurate than
nonlinear OLS applied to Eq. (1), but requires more care and more computa-
tion. In the following, practical problems of fitting this model to real data
are considered. In particular, a method of finding starting values for the
nonlinear iterative algorithms is proposed. A sample computer program
using SAS software (14,15) is given in the Appendix. The adequacy of the
proposed method as well as advantages of taking correlated errors into
account are investigated by means of Monte Carlo simulations. An example
of fitting log-normal curves with AR errors of order 3 to GIR data is given
to illustrate the usefulness of the method proposed.

A LINEAR WEIGHTED LEAST SQUARES APPROACH TO
OBTAIN INITIAL ESTIMATES

The common nonlinear estimation procedures are iterative algorithms
requiring appropriate starting values to ensure a successful fit. The problem
of finding suitable initial estimates is an important but neglected issue in
nonlinear regression analysis (16). For the development of an initial estima-
tion procedure for log-normal curves one can make use of the fact that the
log-normal function in Eq. (4) can be linearized via logarithmic transforma-
tion. Applying the log transformation to both sides of Eq. (4) yields the
mathematically equivalent expression

gx)=a+px+yx’ (5)
where g=log(f), x=log(t), and
a =log(a) — bc*
B=2bc—1 (6)
y=—b |

Hence, if f(¢) would be observable, a perfect fit could be obtained by
applying linear OLS to Eq. (5). However, in Model Eq. (1) the values f(r)
are corrupted by additive errors, resulting in the observed values y,. Apply-
ing the log transformation to y, involves several problems. First, some of
the y, possibly are not positive due to negative errors u,. Second, the log
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transformation of some curve patterns caused by the autocorrelation struc-
ture can produce highly biased data. The first problem can be easily solved
by substituting small positive values, e.g., 0.0001, for negative y,. However,
this replacement increases the bias of the data transformation. Hence, using
OLS for such log-transformed data will in general produce an inadequate
fit. However, the goodness-of-fit can be improved by choosing suitable
weights and applying linear weighted least squares (WLS) for initial param-
eter estimation in Eq. (5). Appropriate weights which diminish the bias of
the log transformation are obtained by the observed y, themselves together
with some prior information about the time course. For example, if one
knows that within an initial period of, say, #, =20 min the true curve points
are close to zero, one can choose very small weights or disregard these data
by choosing the weights 0. Thus, the weights can be described by

0 if 1<ty
w,=1¢0.0001 ify, <0 (D
Vi otherwise

For application of linear WLS to Model Eq. (5) a standard linear regression
" program such as PROC REG (14) can be used. To obtain the initial param-
eter estimates for Model Eq. (4) a transformation back into the original
scale is necessary. Solving Eq. (6) for a, b, c yields

2
a=exp<a—————-—(ﬁ+ D )
4y
==Y (3)
C:——E_i.l.
2y

Having computed the starting values in the original scale by means of
Eq. (8), in principle, any nonlinear regression program can be used for the
final nonlinear fit. However, due to the correlated errors [Eq. (3)], some
special computations are required. These can be done easily by using the
SAS/ETS procedure MODEL (15). This procedure in the SAS module,
developed for econometrics and time series analysis, is also suitable for
pharmacokinetic modeling (17). In comparison to other better known non-
linear programs such as NLIN (14) the procedure MODEL has some advan-
tages. A variety of error structures such as AR and autoregressive moving
average (ARMA) processes can be modeled, a quality that is required here.
In addition, one does not have to specify derivatives, simultaneous equations
can be considered, and MODEL can be used for simulations.
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MONTE CARLO SIMULATIONS
Simulated Data

To evaluate the adequacy of the proposed method of obtaining starting
values, log-normal curves with additive normally distributed AR(1) errors
were simulated within the period r€[0,1000] using the parameter values

a=1000
b=1
%)
c=6
ol=1

Using additionally the AR parameter ¢=0.9 and the number of time points
n=1000 (t+=1,...,1000) the simulated data resemble the GIR profiles
recorded in pharmacodynamic studies. The relatively high error variance
o2=1 was chosen to investigate the properties of estimation procedures in
nonoptimal situations possibly occurring in the practice of glucose-clamp
studies. In the simulations presented here the error variance was not varied,
which would be necessary if one wants to investigate the usefulness of the
estimation method for short response curves. In this paper, attention is
focused on log-normal curves with similar properties as GIR data. To ana-
lyze the effect of @ and n, additional parameter combinations were considered
using p=0.1, ¢=0.5, and n=100 (=10, ..., 1000) yielding 2x 3 =6 sets
of parameters. A sample of n=100 is small in this case because the resulting
curve can be masked due to the high error variance. For each of the param-
eter sets s=1000 replications were made, resulting in 6000 simulated log-
normal curves in all. A log-normal function was fitted to each simulated
curve by applying the linear WLS approach to obtain starting values and
then using nonlinear least squares. Final nonlinear estimations were done
with (NLAR) and without (NL) accommodating correlated errors. An
example of such a simulated curve is shown in Fig. 1, where ¢=0.9 and n=
1000 were used. The curve fitting procedure is illustrated by plotting the
retransformed initial curve estimate as well as the final NLAR fit.

Adequacy of the Starting Values

The initial parameter estimates obtained by the linear WLS approach
can serve as starting values if they ensure a successful and fast convergence
of the nonlinear iterative scheme. All simulations with a sample of n= 1000
resulted in a successful fit for both methods. For n=100 and ¢=0.9 the NL
method failed to converge in 23 of 1000 replications, while the NLAR
method failed in 39 cases. For ¢=0.5 no convergence was achieved in 1|
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simuloted time series
’

:’ li' w MK

0 100 200 300 400 500 600 700 800 900 1000
time

— p=l()+AR{1) == {(1)=1000 ™! e-(n()-6)2  eees Iniliol WLS estimote === Fingi NLAR estimate

Fig. 1. Example of a simulated log-normal curve corrupted by correlated
ercors with initial linear WLS and final NLAR estimates.

replication by the NLAR method. All other replications converged for
n=100.

Hence, in more than 99% of the simulations the starting values produced
a successful fit for both nonlinear algorithms. The number of simulations
without convergence was slightly higher for NLAR than for NL due to the
larger number of parameters. The only case in which a noteworthy number
of replications did not converge was n=100 and ¢=0.9 showing that for
highly correlated data with the error variance considered a large number of
time points is necessary. Hence, the simulations indicate that the starting
values obtained by the linear WLS approach in general ensure a fast and
successful fit for Jog-normal curves with autocorrelated errors if a sufficient
number of time points is available.

Comparison of NL and NLAR

In the context of linear regression it is well known that OLS remains
unbiased and consistent even if errors are positively correlated (18). How-
ever, standard deviations of parameter estimates are underestimated by OLS
leading to invalid tests and confidence intervals if ordinary ¢ and F distribu-
tions are used (18). Generalized least squares (GLS) is unbiased, consistent
and, in general, more efficient than OLS. The situation in nonlinear regres-
sion is more complicated, because explicit equations for the moments of
nonlinear parameter estimators do not exist. Boxenbaum et al. (1), using
simulations and Glasbey (19), investigating logistic curves, found that the
underestimation of standard deviations also holds for nonlinear regressions
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when correlation of errors is disregarded. In the foliowing, the general prop-
erties of the NL and the NLAR method are investigated and compared for
the simulated log-normal curves in dependence on the level of correlation
given by ¢ and the number of time points n.

Let B be a parameter and f, its estimate from replication r, then the
percentage error of the estimation is defined as

~

e.=P =B < 100 (10)
B
The bias of the estimation is described by the mean percentage error (M PE)
.1 s
MPE=-Y e, (11)
S =1

where s is the total number of replications (s=1000 in this paper).
The precision of the estimation is described by the mean absolute per-
centage error (MAPE)

MAPE=" Y el (12)
S =1

Finally, the percentage improvement (P/) in precision of NLAR over NL
is defined as

_ MAPE(NL) - MAPE(NLAR)
MAPE(NL)

Pl

00 (13)

To investigate bias, precision and improvement of standard errors the same
definitions hold when the unknown true values § in Eq. (10) are replaced

Table 1. Bias and Precision of NL and NLAR Parameter Estimates
n=100 n=1000

a b ¢ a b c
o NL NLAR NL NLAR NL NLAR NL NLAR NL NLAR NL NLAR
A. Bias (MPE) of NL and NLAR parameter estimates

0.1 06 06 1.9 1.9 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0

0.5 2.1 2.1 4.5 4.6 04 04 0.1 0.1 0.7 0.6 0.0 0.0

0.9 106 86 251 255 1.2 0.9 1.2 1.2 32 31 0.2 0.2
B. Precision (MAPE) of NL and NLAR parameter estimates

0.1 5.7 5.7 15.5 = 155 11 1.1 1.8 1.8 4.7 4.7 04 0.4

0.5 9.3 9.3 25.5 256 1.9 1.9 3.0 3.0 1.4 7.4 0.6 0.6
09 232 219 528 520 4.2 42 7.4 7.4 199 199 1.4 1.4

C. Percentage improvement (PI) of NLAR parameter estimates
0.1 -0.02 -0.01 . —0.02 +0.00 -0.03 +0.00
0.5 -0.00 -0.25 -0.00 -0.03 -0.11 ~0.04
0.9 +5.70 +1.36 +5.70 +0.18 +0.18 +0.17
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Table 11. Bias and Precision of NL and NLAR Standard Errors
n=100 n=1000
SE(a) SE(b) SE(c) SE(a) SE(b) SE(c¢)
(1] NL NLAR NL NLAR NL NLAR NL NLAR NL NLAR NL NLAR
A. Bias (MPE) of NL and NLAR standard errors
0.1 -78 -08 -109 -—43 -99 =30 -104 -1.2 -75 420 -9.7 =05
05 -418 -41 -478 -158 =470 -154 =431 -19 -412 +1.5 -426 -09
09 -764 -298 -80.2 -512 -789 -388 -779 -62 -78.7 -105 -771.8 6.1
B. Precision (MAPE) of NL and NLAR standard errors
0.1 9.1 11.1 158 16.1 19.6 20.0 10.4 37 79 5.4 10.1 6.2
0.5 42.0 16.3 48.0 27.0 494 34.4 43.2 5.2 41.2 8.0 42.6 9.2
0.9 846 417 80.7 584 82.5 59.5 71.9 12.3 78.7 20.4 77.8 24.5
C. Percentage improvement (P/) of NLAR standard errors
0.1 -21.2 =22 -1.7 +64.8 +32.0 +39.2
0.5 +61.3 +43.8 4303 +88.0 +80.5 +78.3
0.9 +43.6 +27.6 +27.9 +84.1 +74.1 +68.5

by the empirical standard deviation computed from the simulations. In
Tables IA-IIC the MPE, MAPE, and PI of NL and NLAR for the estimates
of the three function parameters a, b, ¢, and their standard errors are given.
The PI of the NLAR standard errors is also shown in Fig. 2.

The following conclusions can be drawn from Tables IA-IIC and Fig.

2. Bias and precision of NL and NLAR are comparable concerning the
parameter estimates (Tables IA-IC). Only in the case n=100, p=0.9 NLAR
shows a slight advantage (Table 1C). However, it should be noted that both
NL and NLAR perform very poorly in this case. Recall that for this param-
eter set the starting values sometimes did not produce a successful fit, which

100

75

50

25

percent improvement

abc abc abc abc obc obe porometer
v=0.1 #=0.5 =09 =01 p=0.5 ¢=09 simulations

Fig. 2. Percentage improvement in precision of NLAR vs NL standard
€ITors.
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Fig. 3. Example of a GIR curve registered during an euglycemic glucose-
clamp study with initial linear WLS and final NLAR fit of a log-normal

function.

is not surprising in this light of the high MPE and MAPE of the estimates.
As in linear regression, standard deviations are considerably underestimated
by NL (Table [1A). NLAR performs far better, although bias and precision
are not satisfactory for n=100 (Tables I1A, IIB). While the insufficient prop-
erties of the NL standard errors are comparable for =100 and n= 1000,
the NLAR standard errors improved with increasing number of time points.
The highest PI of NLAR was obtained in the case of moderate autocorrela-
tion (¢=0.5, Table IIC, Fig. 2).

In summary, the properties of NL and NLAR are comparable concern-
ing parameter estimation but NL underestimates standard deviations sub-
stantially. The NLAR standard errors are adequate if the curve considered
contains a sufficient number of time points.

EXAMPLE

The method described was applied to real GIR data recorded during
an euglycemic glucose-clamp study. To investigate the dose-response charac-
teristics of a long-acting insulin preparation (NPH insulin: Humulin N, Eli
Lilly, Indianapolis, IN) 8 healthy subjects were connected to a Biostator
(20). Each subject received in random order three subcutaneous insulin
injections into the abdominal wall using three different doses. GIR necessary
to keep blood glucose constant at 5 mmol/] thereafter were recorded each
minute for 20 hr thereafter. To each of the 24 GIR curves log-normal
functions with autoregressive errors of order p=3 were fitted. This order is
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suitable for most GIR curves shown by application of the Box-Jenkins
method (7,9). As an example the initial and final estimation for one of the
GIR curves are illustrated in Fig. 3. The NLAR estimates (SE in paren-
theses) of the log-normal function parameters in this case are: d=
2381.8 (108), 5=0.477 (0.055), ¢=6.903 (0.112). In comparison, the NL
method resulted in: 4=2378.9 (45), b=0.478 (0.023), ¢=6.901 (0.047). In
the light of the simulations, we can conclude that the standard errors of the
NL method are too small. A sample computer program using the SAS code
to perform the necessary calculations is given in the Appendix.

In this study the summary measures curve maximum (Cpx), time to
curve maximum (Zmax), and area under the curve (4UC) are of interest.
These can be calculated from the log-normal function parameters by

1
Imax = I
CXp(C Zb)
Crax =aex (—l—-—c) (14)
max p 4b

AUC=a./m/b

For the example shown in Fig. 3 the summary measures computed by means
of Eqgs. (14) are fmax =349 min, Cyax=4.04 mg/min per kg, and AUC=
6111 mg/kg. Table III contains the means and standard deviations of the
summary measures at each dose level (units per kg body weight). From the
results in Table III it can be concluded that there are no obvious dose effects
ON Imax While the Cax and AUC values tend to increase with increasing dose
level.

DISCUSSION

This paper addresses practical problems of fitting nonlinear regression
models with correlated errors to individual pharmacodynamic time series

Table I1I. Means and SDs for Summary Measures of GIR Curves
Means (SD) for dose

0.2 U/kg 0.4 U/kg 0.8 U/kg
frnax (MiN) 259 (81) 241 (51) 270 (48)
Comax (mg/min per kg) 3.69 (1.96) 4.93 (1.37) 6.43 (2.05)

AUC (mg/kg) 3566 (1850) 4334 (2214) 9804 (7351)
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data. The problem of finding suitable starting values for the nonlinear
iterative algorithms is solved by a linear WLS approach in the context of
log-normal curves. Although the adequacy of the approach is shown only
in the case of log-normal functions it can be assumed that the method is
also applicable to other equations, e.g., gamma curves, perhaps by choosing
alternative weights. By using the initial estimates of the WLS approach as
starting values the nonlinear fitting can be performed conveniently by means
of the SAS/ETS procedure MODEL (15).

The method described 1s suitable for unimodal curves with errors form-
ing a stationary time series, i.e., the errors are correlated but have homosced-
astic variances. The number of time points must be sufficiently large, so that
a reasonable time series model can be fitted to the errors. In the case of
pharmacokinetic data containing only a few time points and heteroscedastic
variances the method will fail because the error structure cannot be described
by means of time series methods. For such data it is more appropriate to
use OLS and correct the standard errors. Gallant (21) gives an estimated
asymptotic covariance matrix for the OLS estimate which can be used even
in the case of nonstationarity.

The use of nonlinear functions for the description of time action profiles
has a number of advantages. First, a large number of curve points can be
summarized by a small number of function parameters containing the rel-
evant information. Second, important summary measures can be calculated
from the function parameters even if the curve considered is corrupted by
autoregressive noise. In this case a direct computation of summary measures
is not adequate. Third, the computation of the total 4UC is possible, which
requires a mathematical or pharmacokinetic model in any case.

The comparison of the statistical properties of the nonlinear least
squares methods with and without accommodating correlated errors showed
similar conditions as in the linear case. Whereas the parameter estimates are
comparable, disregarding correlated errors leads to a substantial underestim-
ation of standard deviations. Hence, models taking the correlation structure
into account should be used if one is interested in valid standard errors.

In summary, we demonstrated that methods of nonlinear regression
analysis combined with time series analysis can be applied to individual
correlated pharmacodynamic data with stationary.time series errors. Stan-
dard software for time series can be used for calculations.
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APPENDIX

EXXRREEER AR AR RRRRERE SRR R AR EK R R SR RE KR KR RARRRBAEEREAREERER AR AR AR RRAKREEERRARKE AR AL
* FIT OF A LOGNORMAL CURVE TO CORRELATED DATA *
* BY USING NONLINEAR LEAST SQUARES AND »
» A LINEAR WLS APPROACH FOR OBTAINING STARTING VALUES .

LA X RS R RS S AR RS2SRRSR R RS R RS AR R R R R SR R RS RS R R R R R RS R RS RE SRS ER S S X R

* NOTE: The data set ‘CURVE’ must contain at least 2 Variables: *
1) t for the time points and *
* 2) Y for the curve points used. *,

data lin; set curve; .
if Y{=0.0001 then Y=0.0001;

G = log(Y);

X1 = log(t);

X2 = log(t)**2;

w =Y,

if 0O<t<=10 then w=0; * 1-10min: weights=0 *;

if 10<t<=20 then w=0.0001; * 11-20min: weights=0. 0001 *,

® - -- *Linear WLS Estimation® ---c---coooeooooooo. .
proc reg data=1lin outest=wlspar noprint;

model G=X1 X2;

weight w;
run;

L *Retransformation of Initial Estimates* --------ua-- *,
data wlspar;

set wlspar(keep=intercep xl1 x2);

A = exp(intercep-(x1+1)**2/(4*x2));

B = —x2;
C = —(x1+1)/(2%*x2);
PHI1 = 1.4; * Buitable starting values ;
PHI2 = —0.5; * for the parameters of *,
PH13 = —0.1; * AR(3) errors *,
run;
B o e o o o e e e S e G e = e M= e Em M em M . Em mE . Am . dm Sm Em Sm Am e S S S A S Am m M Gm m e e = e e e . - *
| Final Estimation
» *

title ‘Nonlinear Fit of Lognormal Curve with AR(3) Errors';
proc model data=curve;
var Y T;
parms A B C PHI1 PHIZ2 PHI3;
f=A * T**(~1) * exp(—B*(log(T)-C)**2);
Y=f+PHI1*zlagl(Y-f)+PHIR*2zlag2(Y-f)+PHI3*zlag3(¥Y-1);
fit Y / estdata=wlspar out=fit outpredict outest=est outs=sigma dw;
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solve Y / estdata=est out=func simulate random=0;
range T=1 to 1200;

run;

B e e e e e e o = = o = = e = o e = = e . Y - - = e e e e == == *
} Plot |
B o o e o e e = = = e e e e S e l;
data fit; set fit; rename Y=Yhat;

data func; set func; rename Y=fhat;

data plot; merge curve fit func; by t;

run;

title f=swissl h=2 ‘Nonlinear Fit of Lognormal Curve with AR(3) Errors’;
proc gplot data=plot;

plot (Y Yhat fhat)*t /overlay vref=0;

run;
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