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Summary

In this paper a method for quantitative risk assessment in epidemiological studies investigating thresh-
old effects is proposed. The simple logistic regression model is used to describe the association be-
tween a binary response variable and a continuous risk factor. By defining acceptable levels for the
absolute risk and the risk gradient the corresponding benchmark values of the risk factor can be calcu-
lated by means of nonlinear functions of the logistic regression coefficients. Standard errors and con-
fidence intervals of the benchmark values are derived by means of the multivariate delta method. The
proposed approach is compared with the threshold model of Ulm (1991) for assessing threshold values
in epidemiological studies.

Key words: Benchmark values; Binary data; Epidemiological studies; Logistic re-
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Zusammenfassung

In dieser Arbeit wird eine Methode der quantitativen RisikoabschaÈtzung in epidemiologischen Studien
zur Untersuchung von Schwellenwerteffekten vorgeschlagen. Zur Beschreibung der Assoziation zwi-
schen einer binaÈren Zielvariablen und einem stetigen Risikofaktor wird das einfache logistische Regres-
sionsmodell verwendet. Indem akzeptable Schwellen fuÈr das absolute Risiko und den Risikogradienten
definiert werden, koÈnnen die entsprechenden Referenzschwellen fuÈr den Risikofaktor mit Hilfe von
nicht-linearen Funktionen der logistischen Regressionskoeffizienten bestimmt werden. Standardfehler
und Konfidenzintervalle fuÈr die Referenzschwellen werden mit Hilfe der multivariaten Delta-Methode
abgeleitet. Der vorgeschlagene Ansatz wird mit dem Modell von Ulm (1991) zur AbschaÈtzung von
Schwellenwerten in epidemiologischen Studien verglichen.

1. Introduction

In several medical areas such as toxicology and occupational epidemiology it is
often of interest to assess whether an explanatory factor has a threshold effect on a
specific response variable. Recently, in diabetes research a number of authors in-
vestigated whether glycosylated hemoglobin (HbA1c) has a threshold effect on the
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risk of microvascular diabetic complications (Diabetes Control and Complica-
tions Trial Research Group, 1993, 1995, 1996; Danne et al., 1994; Klein
et al., 1994; Krolewski et al., 1995; Reichard, 1995; Orchard et al., 1997).
A similar problem is the identification of glycemic threshold levels suitable to
prevent complications in pregnant diabetic patients (Langer, 1996).

Unfortunately, for calculation of threshold values no standard method is avail-
able. Hence, a number of different approaches have been applied to identify glyce-
mic threshold values leading to controversial results. Besides the invalid applica-
tion of methods for continuous response variables to determine break points in
linear regressions (Jones and Molitoris, 1984), these controversial results are the
consequence of an unclear research hypothesis, insufficient amount of data, unre-
flected use of statistical methods and unjustified conclusions. In the problem of
identifying specific glycemic levels, a threshold value is quite generally described
and interpreted as a value, ªbelow which the risk gradient of diabetes complica-
tions is minimal or flatº (Orchard et al., 1997). It should be recognized that the
identification of such ªthreshold valuesº requires methods for quantitative risk
assessment. First of all, it is required to specify a suitable statistical model describ-
ing the dose-response relationship between a continuous risk factor (HbA1c) and a
binary response variable (diabetic complication yes/no). Secondly, acceptable lev-
els of the absolute risk or the risk gradient must be defined within the framework
of the chosen statistical model. Thirdly, these values have to be estimated and the
uncertainty of the estimations have to be described by means of confidence inter-
vals. However, in all papers investigating the existence of glycemic thresholds,
conclusions were presented without definition of what is meant by a ªthreshold
valueº.

While a number of approaches to determine break points in regression models
suitable for continuous response variables are presented in the literature (Jones
and Molitoris, 1984; Edler and Berger, 1985), methods for binary response
data are rare. Recently, Ulm (1991) described a modification of the logistic model
for estimating and testing a threshold value in epidemiological studies. This model
assumes that the risk of an event is constant below the threshold and increases
according to the logistic equation above the threshold. If this assumption is reason-
able for the data considered the application of this method is justified. However,
even in dose-response relationships without a threshold value according to Ulm
(1991), it is possible that there is a value below which the risk gradient is ªflatº.
To identify such a value it has to be defined what is meant by ªflatº.

A number of approaches for quantitative risk assessment have been developed
for quantal response data of toxicological and teratological experiments (Meister,
1994). Especially, the general concept of benchmark doses (Crump, 1984; Chen
and Kodell, 1989) seems to be appropriate for the problem of identifying glyce-
mic threshold values. However, this concept has to be adapted to the non-experi-
mental data situation of epidemiological studies. Crump (1984) defined the bench-
mark dose to be the lower 95% confidence limit of the dose corresponding to a
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specified percent increase in an adverse effect over the background level. Thus, to
calculate the benchmark dose according to Crump (1984) the background level
has to be known. In the case of experimental quantal data the background level is
given by the risk of the control group receiving the dose zero of a chemical agent.
However, in non-experimental data situations such as epidemiological studies,
there is no clear background risk as there is no clear ªzero doseº. Another issue is
whether a benchmark dose should be defined in terms of a confidence limit. This
concept has been criticized by Murrell, Portier, and Morris (1998). A confi-
dence limit is a reflection of the variance and sample size of the data rather than a
reflection of the measured dose-response curve. At first the best estimate of a
measure should be provided accompanied by an adequate information about its
uncertainty. Thus, a benchmark value should be defined as a point estimate char-
acterizing the dose-response relationship accompanied by confidence limits to indi-
cate the uncertainty of the estimate.

In this paper a quantitative risk assessment approach suitable for binary re-
sponse data of epidemiological studies investigating threshold effects is presented.
Similar to the concept of benchmark doses for experimental quantal data, two
types of benchmark values corresponding to an acceptable risk and an acceptable
risk gradient are calculated on the basis of the simple logistic regression model.
As these benchmark values represent nonlinear functions of the logistic regression
coefficients, standard errors and confidence intervals are derived by means of the
multivariate delta method (Bishop, Fienberg, and Holland, 1975). The bench-
mark approach is compared to the threshold model of Ulm (1991).

The proposed method is illustrated by application to a study investigating the
association between glycosylated hemoglobin and the development of diabetic ne-
phropathy and to a study investigating the risk of makrosomia in pregnancies of
type 1 diabetic women.

2. Quantitative Risk Assessment Based Upon Logistic Regression

The standard method in epidemiological studies to analyze the effect of a continu-
ous risk factor X on a binary response variable Y (e.g. disease yes/no) is logistic
regression (Hosmer and Lemeshow, 1989). Let p�x� � P�Y � 1 j Y � x� be the
probability of an event given X � x then the simple logistic regression model
assumes that the log odds (also called `logits') of p are linearly related to X, i.e.
log �p=�1ÿ p�� � a� bx, which is mathematically equivalent to

p�x� � exp �a� bx�
1� exp �a� bx� : �1�

Hence, the probability p of having an event is a continuous function of X which is
differentiable at each point. In the following it is assumed that there is a positive
relation (b > 0) between p and X. The following definitions and formula can be
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transferred to negative associations and also to other generalized linear models
using other link functions.

Generally speaking, a benchmark value is a characteristic point of the dose-
response curve at which the risk of an event rises so steeply that this point has
practical relevance. The difficulty is to define what is meant by ªso steeplyº.
There are at least two possibilities to define benchmark values based on the logis-
tic curve.

At first, a benchmark can be defined as the value of an acceptable risk level
(VARL), where the acceptable risk level is given by a probability p0 (e.g.
p0 � 0:05). This means that for values of X below VARL the risk of an event is
lower than p0 (Figure 1). It follows from (1) that

VARL � pÿ1�p0� � 1

b
log

p0

1ÿ p0

� �
ÿ a

� �
: �2�

The definition of the VARL is quite simple and can be easily communicated.
However, the shape of the relation between p and X is not taken into account. It
may be that for values of X above VARL the risk is above p0 but only by such a
small amount which has no practical relevance.

A suitable definition which takes the shape of the response curve into account
can be formulated by means of the derivative of the logistic function (1), which is
given by

d�x� � p0�x� � b exp �a� bx�
�1� exp �a� bx��2 : �3�
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Fig. 1. Benchmark VARL defined as the value of the risk factor X at which the risk of an
event based on the logistic curve is equal to the risk level p0



The derivative (3) of a logistic curve represents an unimodal and symmetrical
curve with a maximum value of dmax � b=4 at xmax � ÿa=b (Figure 2). Hence,
for any given value d0 (except of dmax) there exist two corresponding x values,
one below and one above xmax.

A gradient type benchmark can be defined as the lower value of an acceptable
risk gradient (VARG), where the acceptable risk gradient is given by a value
d0 � b=4 (e.g. d0 � 0:2). If the chosen gradient d0 is larger than b/4 no corre-
sponding VARG exists. According to this definition for values of the risk factor X
below VARG the risk increase per unit increase of X is lower than d0. The mean-
ing of the gradient type benchmark VARG is illustrated in Figures 2 and 3. It
follows from (3) that

VARG � dÿ1�d0� � 1

b
log

bÿ 2d0 ÿ
��������������������
b2 ÿ 4d0b

q
2d0

0@ 1Aÿ a

0@ 1A
�0 < d0 � b=4� : �4�

Of course, the limits p0 and d0 are subjective and it may be difficult to give
generally acceptable reasons for the chosen limits. However, if a benchmark va-
lue should have a clinical rather than a pure mathematical meaning the specifica-
tion of limits is unavoidable. Other more complicated benchmark definitions are
possible, perhaps based upon a combination of limits for the risk and the risk
gradient.
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Fig. 2. Derivative of the logistic curve with maximum and benchmark VARG defined as the
lower value of the risk factor X at which the risk gradient is equal to the gradient level d0



3. Standard Errors and Confidence Intervals

In applications, VARL and VARG can be estimated by means of formulas (2) and
(4), in which the logistic coefficients a and b are replaced by their maximum like-
lihood estimators (MLEs). As the benchmarks VARL and VARG are nonlinear
functions of the logistic coefficients, the standard errors (SEs) of the correspond-
ing estimators can be calculated approximately by means of the multivariate delta
method (Bishop et al., 1975). Let q̂ be the MLE of the parameter vector
q � �a; b�0 and let S � �sij�i; j�1; 2 be the covariance matrix of q̂ then the standard
errors of the estimators of VARL and VARG can be calculated approximately by

SE �VcARL� � 1

b̂

��������������������������������������������������������������������
ŝ11 � 2 VcARL ŝ12 � �VcARL�2 ŝ22

q
; �5�

SE �VcARG�

� 1

b̂

��������������������������������������������������������������������������������������������������������������������������������������������������
ŝ11� 2 VcARG�

��������������������
b̂2ÿ 4d0b̂

q
ÿ1

� �
ŝ12� VcARG�

��������������������
b̂2ÿ 4d0b̂

q
ÿ1

� �2

ŝ22

s
:

�6�
As a MLE is asymptotically normally distributed and a function of MLEs is the
MLE of the corresponding parameter, the estimators of VARL and VARG are
MLEs and asymptotically normally distributed. Let n̂ be the estimator of VARL or
VARG, then an approximate �1ÿ a� � 100% confidence interval of the bench-
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Fig. 3. Benchmark VARG defined as the lower value of the risk factor X at which the risk
gradient of a logistic curve is equal to the gradient level d0



mark value n can be calculated by

n̂� z1ÿa=2 SE�n̂� ; �7�
where zq denotes the q-quantile of the standard normal distribution.

For estimation of the benchmarks VARL and VARG and the calculation of
standard errors and confidence intervals, I have prepared a SAS/IML (SAS, 1985)
program, which is available via the internet (ªhttp://www-public.rz.uni-duessel-
dorf.de/~bender/softw.htmº) or from the author on request.

4. Threshold Model

In order to incorporate the concept of threshold effects directly into the statistical
analysis Ulm (1991) developed a threshold model within the framework of logistic
regression. He modified the logistic model to

log
p

1ÿ p

� �
� a

a� b�x ÿ t� for
X � t
X > t

;

�
�8�

where t is the threshold value of the risk factor X. This model assumes that the
risk of an event is constant below the threshold t and increases according to the
logistic equation above t. Instead of the logits other link functions can also be
used. Ulm (1991) proposed a maximum likelihood procedure based upon a grid
search to estimate the unknown parameters t; a; b and a likelihood ratio test for
the hypothesis that the threshold value t is larger than the observed minimum of
X, i.e.

H0 : t � min �x� vs: H1 : t > min �x� : �9�
An exact algorithm for estimating the threshold value was developed by KuÈchen-
hoff (1997). Based upon the likelihood ratio statistic an approximate confidence
interval for t can be constructed (Ulm, 1991). For performing the iterative optimi-
zation procedure specialized software is required (e.g. GLIM, SAS/IML). For the
calculations of the example given below I have used SAS/IML (SAS, 1985). Note
that in Ulm's model the threshold is defined as non-differentiable break point of a
continuous response curve regardless of the amount of risk increase at the thresh-
old point.

5. Examples

5:1 Glycemic threshold for diabetic nephropathy

The methods described above were applied to data of a follow-up study of a
prospective multicenter trial, which documented the feasibility to translate an in-
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tensified insulin treatment and teaching program from a specialized University
diabetes center to general hospitals (MuÈhlhauser et al., 1996). In this study 784
consecutively referred patients with type 1 diabetes had taken part in the same 5-
day treatment and teaching program for intensified insulin therapy in one of 10
participating hospitals and were re-examined after 1, 2, 3, and 6 years. Here, only
the data of the subgroup of patients (n � 480) with no nephropathy at baseline
and complete follow-up data are presented. The response variable considered here
is development of nephropathy after 6 years of follow-up (NEPH). A patient was
classified as having nephropathy if proteinuria >50mg/l or serum creatinine
>133 mmol/l or a renal replacement therapy was applied. The main explanatory
variable is glycosylated hemoglobin (HbA1c) calculated as mean value of the mea-
surements at baseline, 1, 2, and 3-year examination. Hence, the effect of glycemic
control during the first 3 years of observation on the 6 year risk of diabetic ne-
phropathy was investigated. HbA1c levels were measured by the Diamat1 HPLC-
method (Biorad, MuÈnchen, Germany) which has a reference range for non-dia-
betic subjects of 4.3±6.1%. As important predictor for nephropathy the mean
diastolic blood pressure (DBP) of the measurements at baseline and the first 3
years also is considered (MuÈhlhauser et al., 1996). Table 1 summarizes this set
of data.

At first, a simple and a multiple logistic regression analysis were performed.
The results are given in Table 2. As the results of the two models concerning the
effect of HbA1c on NEPH do not differ, in the following only HbA1c is considered
as single explanatory variable. Nearly the same results were obtained by using the
complementary log-log (ÿ2 log-likelihood � 431.51) and the probit link function
(ÿ2 log-likelihood � 432.90).
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Table 1

Characteristics of the sample of diabetic patients with no nephropathy at baseline

Nephropathy at 6-year follow-up

No
n = 391

Yes
n = 89

Total
n = 480

Gender (male/female) n = 210/n = 181 n = 49/n = 40 n = 259/n = 221
Age at baseline (years) 26.51 (6.81) 25.88 (7.13) 26.39 (6.87)
Diabetes duration at baseline
(years)

7.50 (6.97) 7.94 (6.82) 7.58 (6.93)

Mean systolic blood pressure
(mmHg)

133.9 (11.4) 136.4 (12.4) 134.4 (11.6)

Mean diastolic blood pressure
(mmHg)

77.9 (6.5) 79.8 (5.8) 78.3 (6.4)

Mean glycosylated hemoglobin
(%)

7.52 (1.16) 8.36 (1.66) 7.67 (1.31)

data are given as means (SD) or numbers



Secondly, the benchmarks VARL and VARG were estimated as described
above. Reasonable choices for p0 are 0.01, 0.05, and 0.10. However, the corre-
sponding benchmark values for p0 � 0.01 and p0 � 0.05 lay outside the observa-
tion range of HbA1c. Hence, for the acceptable risk limit only the value p0 � 0.10
was considered, yielding VARL � 6.3 (SE = 0.434, 95%-CI � 5.5±7.2). At first
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Table 2

Logistic regression analysis for development of diabetic nephropathy

Risk
factor

Regression
coefficient

Standard
error

p-value Difference
for odds ratio

Odds
ratio

95% Confidence
interval

Simple logistic regression model

Intercept ÿ5.089 0.731 0.0001
HbA1c �0.457 0.089 0.0001 1% 1.58 1.3±1.9

ÿ2 log-likelihood = 432.52, Hosmer-Lemeshow goodness-of-fit test: p = 0.965

Multiple logistic regression model

Intercept ÿ8.978 1.735 0.0001
HbA1c �0.463 0.091 0.0001 1% 1.59 1.3±1.9
DBP �0.049 0.019 0.0112 5 mmHg 1.28 1.1±1.5

ÿ2 log-likelihood = 426.04, Hosmer-Lemeshow goodness-of-fit test: p = 0.924

sample size: n = 480, number of events: n = 89

Fig. 4. Estimated logistic curve with 95% confidence band and corresponding benchmarks
VARL (for p0 = 0.10) and VARG (for d0 = 0.05, 0.10) for the nephropathy data (sample size:
n = 480, events: n = 89)



sight the choice of the acceptable risk limit p0 = 0.10 appears to be high, but one
has to consider that the 6 year risk of developing diabetic nephropathy is high in
the considered population. The result of an HbA1c-VARL of 6.3% means that a
patient should be normoglycemic to have a risk below p0 � 0.10 of developing
nephropathy. However, the corresponding wide confidence interval makes a clear-
cut clinical recommendation concerning gylcemic control difficult. The maximal
value of the derivative of the estimated logistic response curve was dmax � 0.114.
Thus, as acceptable risk gradients the values d01 � 0.05 and d02 � 0.10 were con-
sidered. The corresponding VARG estimates were VARG1 � 6.9 (SE � 0.427,
95%-CI � 6.0±7.7) and VARG2 � 9.5 (SE � 1.514, 95%-CI � 6.6±12.5), respec-
tively. This means that below an HbA1c of 6.9% and 9.5% the risk gradient for
developing nephropathy is below 0.05 and 0.10, respectively. As above, the wide
confidence intervals indicate a large uncertainty of these estimates. These results
are illustrated in Figure 4.

Thirdly, the threshold model of Ulm (1991) was applied to the same data. A thresh-
old value could be estimated with this approach yielding t̂ = 5.9 (95%-CI � 4.9±7.6).
The fit of the threshold model (ÿ2 log-likelihood � 431.64) was slightly better
than that of the simple logistic model (ÿ2 log-likelihood � 432.52) but was not
significant (p � 0.175). Nearly the same result was obtained by using the com-
plementary log-log link (t̂ � 5.9, 95%-CI � 4.9±8.1, ÿ2 log-likelihood � 430.81,
p � 0.201). The response curves of the logistic model and the threshold model are
compared in Figure 5 demonstrating that there is no clinically relevant difference
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Fig. 5. Comparison of the estimated response curves from the logistic model (- - - - - -) and
the threshold model of Ulm (1991) (ÐÐÐ) for the nephropathy data (sample size: n = 480,
events: n = 89)



between the curves. The data can be adequately described by both models.
Whether the correct response curve contains a break point or not would lead to
the same clinical recommendations concerning glycemic control.

5:2 Glycemic threshold for fetal macrosomia

A similar problem as in example 1 is the identification of glycemic threshold val-
ues which are suitable for the prevention of complications in pregnant diabetic
patients (Langer, 1996). One of these complications is fetal macrosomia, which is
frequently defined as birth weight >90th percentile of the reference population
adjusted for gender and gestational age. As the choice of the 90th percentile for
definition of macrosomia is arbitrary, it is implausible to assume that a glycemic
threshold defined as non-differentiable break point in the association between
HbA1c and the risk of macrosomia exists. However, as ±± by definition ±± the risk
of macrosomia in the general population is 10%, an important clinical issue is
whether there is a target value for glycemic control below which the risk of
macrosomia is normalized, i.e. is 10%. This question leads directly to the calcula-
tion of the benchmark VARL using p0 � 0.10.

For illustration, the data of a cohort study of type 1 diabetic pregnant women
were used (Kimmerle, Bender, and Berger, 1998). In this study information
about macrosomia and the maternal third trimester HbA1c (HPLC-method, normal
range for pregnant women: 3.7±5.4%) was available for n � 111 women. The
number of infants with macrosomia was n � 27.

A significant association between third trimester HbA1c and the risk of macro-
somia could be demonstrated. The results of a simple logistic regression analysis
are shown in Table 3. The estimated benchmark VARL for the normal risk value
in the general population of p0 � 0.10 was VARL � 4.6 (SE � 0.495, 95%-
CI � 3.6±5.6). As the confidence interval of the VARL estimate lies in the normo-
glycemic range of pregnant women, this result indicates that diabetic pregnant
women should be normoglycemic to have a normalized risk of fetal macrosomia.
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Table 3

Logistic regression analysis for fetal macrosomia

Risk
factor

Regression
coefficient

Standard
error

p-value Difference
for odds ratio

Odds
ratio

95% Confidence
interval

Simple logistic regression model

Intercept ÿ6.408 1.852 0.0005
HbA1c �0.917 0.315 0.0036 1% 2.5 1.3±4.6

ÿ2 log-likelihood = 113.42, Hosmer-Lemeshow goodness-of-fit test: p = 0.785

sample size: n = 111, number of events: n = 27



6. Discussion

In this paper an approach of quantitative risk assessment for epidemiological stu-
dies investigating threshold effects of continuous risk factors is presented within
the framework of logistic regression. This approach is compared with the thresh-
old model of Ulm (1991).

The demonstration of a threshold effect between a continuous risk factor and a
binary response variable is not a simple task. It goes far beyond the output of a
simple logistic regression analysis where only the strength of an association is
assessed without the goal of describing the relationship in detail. Before a thresh-
old effect can be established, the meaning of the threshold value has to be de-
fined. Ulm (1991) defined a threshold as non-differentiable break point of the
risk response curve with constant risk below and increasing risk above the break
point. In a similar but more general way Pastor and Guallar (1998) defined a
threshold as change point in a two-segmented logistic regression with different
risk increases below and above the change point. These approaches have the
advantage that they represent objective criteria and do not require a quantitative
risk assessment based upon subjective limits. However, break and change points
have first of all only a mathematical meaning. It is possible that a value can be
found which fulfills the mathematical criteria but has no clinical relevance be-
cause the risk increase beyond the threshold point is negligible. On the other
hand, there can be situations in which a benchmark value with clinical relevance
exists but which is not conform with the mathematical definition of a break or
change point. A quantitative risk assessment based upon the standard logistic
curve requires the specification of acceptable limits for the absolute risk or the
risk gradient but this procedure guarantees that the estimated benchmark values
correspond with a clearly defined amount of risk increase. Hence, clinical deci-
sions are possible and the meaning of the estimated benchmark values can be
communicated.

The main drawback of all statistical models for estimating threshold values is
that they make assumptions about the thresholds themselves. Hence, the results
can be model dependent. Ulm (1991) pointed out that for assessing of threshold
effects always more than one model should be applied. One should be aware that
the use of other models or even the use of data transformations can result in other
estimates of the threshold value. Conclusions about threshold effects should only
be made if the model assumptions, e.g. a constant risk below the threshold, is
biologically plausible. In cases, where a threshold value defined as break or
change point cannot be identified or is implausible, the quantitative risk assess-
ment approach proposed in this paper represents a useful alternative.

In the example of the association between glycosylated hemoglobin and dia-
betic nephropathy no significant threshold value according to Ulm (1991) could
be estimated. That means that the data do not suggest the existence of a break
point. Moreover, even if the estimated threshold would have been significant, the
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clinical relevance of this threshold would be questionable as there is nearly no differ-
ence between the response curves of the threshold model and the logistic model (Fig-
ure 5). On the other hand, different benchmark values could be estimated in de-
pendence on the limits of an acceptable risk and an acceptable risk gradient.
However, no clear-cut conclusion could be drawn because the confidence intervals
of all estimated benchmark values were too wide. It remained unclear whether
diabetic patients should maintain their HbA1c in the normoglycemic range or if a
HbA1c value beyond the upper limit of the normoglycemic range is sufficient to
avoid a risk of diabetic complications above the chosen acceptable limits. Never-
theless, the benchmarks VARL and VARG give useful information which HbA1c

values are associated with which risk levels and risk gradients. The application of
the quantitative risk assessment approach forces investigators to define the bench-
mark values which should be identified. It is not surprising that there is a continuous
controversy whether a glycemic threshold for diabetic complications exists (Orchard
et al., 1997) due to the lack of a clear definition of what is meant by a ªthreshold
effectº.

In the example of the association between the maternal third trimester HbA1c

and the risk of macrosomia the assumption of a break point was principally im-
plausible. The quantitative risk assessment approach represents the natural method
to identify the target value for glycemic control below which the risk of macro-
somia is normalized. Although the confidence limits of the estimated benchmark
VARL = 4.6 (95%-CI = 3.6±5.6) were wide, a clinically important conclusion is
possible. As the confidence interval lies in the normal range of pregnant women
(3.7±5.4%), the data suggest that diabetic women with normoglycemia during
pregnancy have a normalized risk of fetal macrosomia.

In summary, the quantitative risk assessment approach proposed in this paper is
a useful tool to estimate benchmark values of continuous risk factors in epidemio-
logical studies investigating threshold effects. The approach is based upon the
simple logistic regression model which is one of the most often used methods in
epidemiology. It is required to specify acceptable levels for the absolute risk or the
risk gradient, which guarantees the clinical relevance of the estimated benchmark
values for the considered problem.
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